BAŞKENT ÜNİVERSİTESİ TİCARİ BİLİMLER FAKÜLTESİ SİGORTACILIK VE RİSK BÖLÜMÜ Ankara / TÜRKİYE Prof.Dr. Serpil CULA DERS3 Raslantı Değişkeni Tanımı Ve Özellikleri Olasılık, kitle ile örneklem arasındaki bağıntıyı kurmaya yardımcıdır. Bu amaçla önceki konularda, rastlantıya bağlı olaylardan ve bu olayların gerçekleşme olasılıklarından söz edilmişti. Rasgele deney sonucunda tanımlanan bir özellik sayısal bir değerle ifade edilebiliyorsa, bu özellik raslantı değişkeni olarak isimlendirilecektir. Örneğin: Bir basketbol takımının bir sezon boyunca her maçta kazandığı sayılar, Bir sigorta şirketine gelen, belirlenen bir ay içinde belli bir zaman aralığında gelen müşterilerin günlük sayıları, Bir denetçinin hatalı dosya buluncaya kadar inceleyeceği dosya sayısı, Bir gıda maddesinde koruyucu madde oranı, Paketlenmiş olarak satılan bir ürünün ağırlığı . Raslantı değişkenleri X, Y, Z gibi büyük harflerle, bu değişkenlerin aldığı sayısal değerler de x, y, z gibi küçük harflerle gösterilir. Örneğin sezon boyunca her maçta kazanılan basketbol sayıları X, alınan değerler ise x1=82, x2=70,...,x34=65 olacaktır. Raslantı Değişkeni Tanımı Ve Özellikleri Kesikli Raslantı Değişkenin Dağılımı: X, sonlu sayıda x1,x2,...,xn değerlerini f(xi)=P(X=xi) i=1,2,...,n olasılıkları ile alabilen kesikli raslantı değişkeni olsun. Bu raslantı değişkeninin alabileceği değerlerin, o değeri alma olasılıkları ile birlikte belirtilmesine X’in olasılık dağılımı ya da olasılık fonksiyonu (kesikli olasılık fonksiyonu) denir. X’in olasılık dağılımı ya da olasılık fonksiyonu aşağıdaki koşulları sağlar: 1- P(X=xi)0 tüm xi’ler için n 2- P(X x i ) 1 i 1 dir. : Örneklem uzayı sonsuz ise ikinci koşul olur. Raslantı Değişkeni Tanımı Ve Özellikleri Kesikli Olasılık Dağılımından Yararlanarak Olasılık Hesaplama: Olasılık dağılımları raslantı değişkeni için bir fonksiyon vereceğinden, tüm örneklem uzayını tek tek yazmadan da yukarıda verilen fonksiyon yardımıyla istenilen olasılıklar elde edilebilir. Örneğin; P(X=a), P(Xa), P(Xa), P(aXb) olasılıkları toplam alınarak bulunabilir. Aşağıda ilgili olasılık formülleri verilmiştir: P(X=a)=f(a) P(X a ) P(X x k ) x k a a P(X a ) P(X x k ) x k b P (a X b ) P ( X x k ) x k a Raslantı Değişkeni Tanımı Ve Özellikleri Kesikli Raslantı Değişkeninin Beklenen Değeri ve Varyansı: Kitle ortalaması ’nün bir diğer gösterimi E(X)’dir. E(X), beklenen değer olarak adlandırılır. x1,x2,...,xn , X raslantı değişkeninin değerleri ve P(X=x1), P(X=x2), ...,P(X=xn) de bu raslantı değişkenlerini alma olasılıkları ise E(X); E(X)==x1P(X=x1)+ x2P(X=x2)+ ...+xnP(X=xn) = xP (X x ) eşitliği ile bulunur. x , X’in aldığı değerlerin ağırlıklı ortalaması olup, ağırlıklar P(X=x) olasılıklarıdır. Beklenen değer, raslantı değişkeninin çok sayıda denemede alacağı değerlerin uzun dönem ortalaması olarak da açıklanabilir. Örnek: Bir kitap sayfalarındaki yanlış sözcük sayıları belirlenmiştir. Sayfaların %79’unda hiç yanlış bulunmamıştır. %19’unda 1, %1’inde 2, %0,8’inde 3, %0,2’sinde 4 yanlış sözcük bulunmuştur. Burada X raslantı değişkeni yanlış sözcük sayıları ise, kitaptaki ortalama yanlış sözcük sayısı nedir? Olasılıklar, P(X=0)=0,79; P(X=1)=0,19; P(X=2)=0,01 ; P(X=3)=0,008; P(X=4)=0,002 olmak üzere, kitaptaki ortalama yanlış sözcük sayısı, E(X)==00,79+10,19+20,01+30,008+40,002=0,242 dır. Raslantı Değişkeni Tanımı Ve Özellikleri Tanım : X raslantı değişkeni ister kesikli ister sürekli olsun, bu değişkenlerin kitlede birbirinden farklı olabileceği açıktır. Raslantı değişkenlerinin ortalamadan ayrılış ölçüsü varyans ile belirlenir. X raslantı değişkeninin varyansı V(X) ile ya da 2 ile gösterilir. Bu tanımdan, 2 E X ( x ) 2 P(X x ) 2 olarak x 2 2 2 2 2 E ( X ) x P ( X x ) ya da daha basit olarak biçimde de yazılabilir. x Varyans’ın kare kökü standart sapmadır ve X raslantı değişkeninin standart sapma, gösterilir. Örnek: Yazım hataları ile ilgili problem için varyans ve standart sapmayı bulunuz. Sayfalardaki yanlış sayısı Olasılık 0 0,79 020,79=0 1 0,19 120,19=0,19 2 0,01 220,01=0,04 3 0,008 320,008=0,072 4 0,002 420,002=0,032 x 2 P(X x ) Verilere ilişkin varyans; 2 0,334 0,242 2 0,28 Starndart sapma; 0,28 0,53 . ile Raslantı Değişkeni Tanımı Ve Özellikleri Sürekli Raslantı Değişkenleri ve Olasılık Dağılımından Yararlanarak Olasılık Hesaplama: Tanım: X raslantı değişkeni, a, b aralığında her gerçel değeri alıyor ise, X sürekli raslantı değişkenidir. Örneğin hasar tutarı, ağırlık, alınan notlar vb. X sürekli raslantı değişkeninin belli değerleri alma olasılıklarını hesaplamak için kullanılan fonksiyona olasılık yoğunluk fonksiyonu denir. Kesikli raslantı değişkenlerinde olasılık fonksiyonunun gördüğü tüm işlevleri, sürekli raslantı değişkenlerinde olasılık yoğunluk fonksiyonu üslenir. X sürekli bir raslantı değişkeni olduğunda, X’e ilişkin olasılık yoğunluk fonksiyonu, f(x) ile gösterilir. f(x), sürekli bir olasılık yoğunluk fonksiyonu olması için aşağıdaki koşulları sağlamalıdır:. b f ( x )dx 0 1- a ; axb için 2- f ( x )dx 1 Sürekli raslantı değişkenleri içinde P(X=a), P(Xa), P(Xa), P(aXb) olasılıkları hesaplanabilir. Aşağıda ilgili olasılıklar verilmiştir: a P(X a ) f ( x )dx P(X=a)=0 P(X a ) f ( x )dx a b P(a X b) f ( x )dx a Raslantı Değişkeni Tanımı Ve Özellikleri Örnek : f(x) fonksiyonu aşağıdaki gibi tanımlanmış olsun. 1 , 0x4 f (x) 4 0 , d.d. Bu fonksiyon bir olasılık yoğunluk fonksiyonu mudur? f(x)0 ve olduğundan, olasılık yoğunluk fonksiyonudur. P(2<X<3) olasılığını bulunuz. 1 1 3 P(2 X 3) dx x 0,25 4 2 24 3 P(X<2,8) olasılığını bulunuz. 1 1 2 ,8 P(X 2,8) dx x 0,7 4 0 0 4 2 ,8 P(X>3) olasılığını bulunuz. 1 1 4 P(X 3) dx x 0,25 4 3 34 4 Raslantı Değişkeni Tanımı Ve Özellikleri Tanım : Sürekli bir raslantı değişkeninin beklenen değeri (ortalaması), E(X)= = xf ( x )dx ve varyansı 2 EX (X ) f (x)dx 2 2 olarak hesaplanır. Bu formül daha basit olarak aşağıdaki biçimde de verilebilir: E(X ) x 2 f (x)dx 2 2 2 2 Örnek: Önceki örnek de verilen f(x) fonksiyonun beklenen değerini ve varyansını bulunuz. E(X)= = xf ( x )dx = 4 1 x x2 x 4 dx 4 dx 8 0 0 4 x3 2 2 2 1 x dx 2 4 12 0 4 4 2 0 4 4 0 64 16 4 4 12 12 3 Raslantı Değişkeni Tanımı Ve Özellikleri Beklenen değer ile ilgili özellikler: Sabit sayıların beklenen değeri kendisine eşittir. k herhangi bir sabit sayı olmak üzere; E(k)=k dır. k herhangi bir sabit sayı ve X raslantı değişkeni olmak üzere k ile X’in çarpımının beklenen değeri, k tane X’in beklenen değerinin çarpımına eşittir. Yani E(kX)=kE(X) dır k sabit bir sayı, X bir raslantı değişkeni ve U(X), X raslantı değişkeninin bir fonksiyonu olsun. k sabit sayı ile U(X) fonksiyonunun çarpımının beklenen değeri, U(X) fonksiyonun beklenen değeri ile k sabit sayısının çarpımına eşittir. Yani, E[kU(X)]=kE[U(X)] olup, burada u ( x )P(X x ) (kesikli ) x dir. EU(X) (sürekli ) u ( x )f ( x )dx Raslantı Değişkeni Tanımı Ve Özellikleri Varyans ile ilgili özellikler: Sabit bir sayının varyansı sıfıra eşittir. k sabit bir sayı olmak üzere, V(k)=0 dir. k sabit bir sayı ve X raslantı değişkeni olmak üzere, k ile X’in çarpımının varyansı, X raslantı değişkeninin varyansı ile k sabit sayısının karesinin çarpımına eşittir. V(kX)=k2 V(X) X raslantı değişkeni ile k sabit sayısının toplamının varyansı, X’in varyansına eşittir. Yani, V(X+k)=V(X) olur. a, b sabit birer sayı ve X raslantı değişkeni olmak üzere aşağıdaki ifade doğrudur: V(aX+b)=a2V(X) 1/21