Genişletilmiş Kalkülüs I (MATH 157) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Genişletilmiş MATH Güz Kalkülüs I 157 4 2 0 5 Ön Koşul Ders(ler)i Dersin Dili İngilizce Dersin Türü Diğer Bölümlerden Alınan Servis Dersleri Dersin Seviyesi Lisans Ders Verilme Şekli Yüz Yüze Dersin Öğrenme ve Anlatım, Soru-Yanıt, Sorun/Problem Çözme Öğretme Teknikleri Dersin Koordinatörü 7.5 Dersin Öğretmen(ler)i Dersin Asistanı Dersin Amacı Math 157- 158 dizisi diferansiyel ve integral hesap yöntem ve kavramlarını içeren giriş niteliğindeki standart kalkülüs dersinin vector kalkülüs ve eğrisel integral konularıyla genişletilmişidir. Bu dersler eklenen konulara bölüm programında gereksinim duyan mühendislik öğrencileri tarafından alınmaktadır. Math 157, mühendislik problemlerinin çözümünde gereken tek değişkenli diferansiyel ve integral kalküküs konularında öğrencilere hesap becerileri kazandırmak amacıyla oluşturulmuştur. Dersin Eğitim Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler; Dersin İçeriği Temel Bilgiler, Limit ve Süreklilik, Türev, Türevin Uygulamaları, L'Hopital Kuralı, İntegral, İntegralin Uygulamaları, İntegral ve Transendental Fonksiyonlar, İntegral Teknikleri, Has Olmayan İntegraller, Diziler • fonksiyon kavramını anlar, fonksiyon tanımlar, kullanır ve fonksiyonu grafikle ifade eder • limit ve süreklilik kavramlarını anlar • türev kavramını anlar, tek-değişkenli fonksiyonların türevlerini hesaplar • maksimum, minimum ve bağımlı-hız problemlerini türev yardımı ile çözer • integral kavramını anlar, integral tekniklerini bilir, alan, hacim ve diğer problemlerin çözümünde kullanır • has olmayan integralleri ve dizileri anlar Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları Hafta Konular Ön Hazırlık 1 P.1 Reel sayılar ve Reel sayı doğrusu P.2 Düzlemde Kartezyen Koordinat P.3 İkinci derece denklemlerin grafikleri P.4 Fonksiyonlar ve Grafikleri P.5 Bileşke fonksiyonlar s:3-39 2 P.6 Polinomlar ve Rasyonel Fonksiyonlar P.7 Trigonometrik Fonksiyonlar 1.1 Hız, Büyüme Oranı ve Alan için örnekler s:39-63 3 1.2 Fonksiyonların Limitleri 1.3 Sonsuzda Limitler ve Sonsuz Limitler 1.4 Süreklilik 1.5 Limitin Biçimsel Tanımı s:63-92 4 2.1 Tanjant Doğruları ve Bunların Eğimleri 2.1 Türev 2.3 Türev Kuralları 2.4 Zincir Kuralı 2.5 Trigonometrik Fonksiyonların Türevleri s:94-125 5 2.6 Yüksek Mertebeden Türevler 2.7 Diferensiyel ve Türev Kullanımları 2.8 Ortalama Değer Teoremi 2.9 Kapalı Türevleme s:125-147 6 3.1 Ters Fonksiyonlar 3.2 Üstel Ve s:163-187 Logaritmik Fonksiyonlar 3.3 Doğal Logaritma ve Üstel Fonksiyon 3.4 Büyüme ve Azalma(Teorem 4,Teorem 5 ve Teorem 6 ve bu teoremler için örnekler) 7 Arasınav 8 3.5 Ters Trigonometrik Fonksiyonlar 3.6 Hiperbolik Fonksiyonlar(sadece tanımları ve türevleri) 4.1 Bağımlı Hızlar 4.3 Belirsiz Durumları s:190-203 s:213-219 s:227-232 9 4.4 Fonksiyonların Uç Değerleri 4.5 Bükeylik ve Büküm 4.6 Bir Fonksiyonun Grafiğinin Çizimi s:232-252 10 4.8 Uç Değer Problemleri 4.9 Doğrusal Yaklaşımlar 2.10 İlkel Fonksiyonlar ve Başlangıç Değer Problemleri (İlkel Fonksiyonlar ve Belirsiz Integral) 5.1 Toplam ve Sigma Sembolleri s:258-271 s:147-150 s:288-293 11 5.2 Toplamların Limiti olarak Alan s:293-316 5.3 Belirli Integral 5.4 Belirli Integralin Özellikleri 5.5 Kalkülüsün Temel Teoremi 12 5.6 Yerine Koyma Kuralı 5.7 Düzlemsel Bölgelerin Alanları 6.1 Kısmi Integrasyon s:316-337 13 6.2 Rasyonel Fonksiyonların Integralleri 6.3 Ters Trigonometrik Değişken Değiştirme 6.5 Has Olmayan İntegraller s:337-353 s:359-367 14 7.1 Dilimleme Yöntemi ile Hacim –Dönel Cisimler 7.2 Dilimleme Yöntemi ile Hacim 7.3 Düzlem Eğrilerin Uzunlukları ve Yüzey Alanı (sadece Düzlem Eğrilerin Uzunlukları)s s:390-407 15 9.1 Diziler ve Yakınksaklık s:495-502 16 Final Sınavı Kaynaklar Ders Kitabı: 1. Calculus: A complete Course, R. A. Adams, C. Essex, 7th Edition; Pearson Addison Wesley Diğer Kaynaklar: 1. Thomas’ Calculus Early Transcendentals, 11th Edition.( Revised by M. D. Weir, J.Hass and F. R. Giardano; Pearson , Addison Wesley) 2. Calculus: A new horizon, Anton Howard, 6th Edition; John Wiley & Sons 3. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall 4. Calculus with Analytic Geometry, R. A. Silverman; Prentice Hall Değerlendirme Sistemi Çalışmalar Sayı Katkı Payı Devam/Katılım - - Laboratuar - - Uygulama - - Alan Çalışması - - Derse Özgü Staj - - Küçük Sınavlar/Stüdyo Kritiği - - Ödevler - - Sunum - - Projeler - - Seminer - - Ara Sınavlar/Ara Juri 2 60 Genel Sınav/Final Juri 1 40 Toplam 3 100 Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı 60 Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 40 Toplam 100 Ders Kategorisi Temel Meslek Dersleri Uzmanlık/Alan Dersleri Destek Dersleri İletişim ve Yönetim Becerileri Dersleri Aktarılabilir Beceri Dersleri Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi # Program Yeterlilikleri / Çıktıları Katkı Düzeyi 1 2 3 4 5 1 Matematik, fen bilimleri ve hesaplama alanlarındaki bilgi birikimini imalat teknolojileri ile ilgili mühendislik problemlerinin çözümünde uygulama becerisi 2 İmalat Teknolojilerine özgü sorunları analiz etme ve tanımlama yeteneği X X 3 Karşılaşılan mühendislik sorununun çözümüne yönelik bir yaklaşım geliştirme ve model ve deney tasarlama ve yapma becerisi X 4 Temel mühendislik ilkelerinin yaratıcı kullanımına X dayalı kapsamlı bir imalat sistemini (yöntem, ürün veya cihaz geliştirme) ekonomik, çevresel sürdürülebilirlik ve üretilebilirlik kısıtları altında tasarlama becerisi 5 İmalat mühendisliği uygulamaları için modern teknik ve X mühendislik araçlarını kullanma ve seçme yetisi 6 Bilgi teknolojilerini etkin kullanarak veri toplama, analiz etme, kritik düşünebilme, yorumlama ve doğru kararlar alabilme becerisi 7 Çok disiplinli ve disiplin içi takım üyesi ve/veya bireysel X olarak etkin bir şekilde çalışabilecek özgüven ve gerekli örgütsel iş becerileri 8 Türkçe ve İngilizcede sözlü ve yazılı olarak etkin iletişim X kurabilme becerisi 9 Yaşam boyu öğrenme ve bilgiye erişebilme, bilim ve teknolojideki son gelişmeleri takip edebilme ve kendini sürekli yenileme kabiliyeti 10 İmalat Mühendisliği alanında mesleki, hukuksal, etik ve sosyal sorunlar hakkında farkındalık ve sorumluluk bilinci 11 Ulusal rekabet gücünü artırmak ve imalat sanayinin X verimliliğini iyileştirmek üzere, kaynakları (personel, donanım, maliyet) etkin kullanan çözüm odaklı proje ve risk yönetimi, girişimcilik, yenilikçilik ve sürdürülebilir kalkınma konularında farkındalık 12 Karar alırken, mühendislik uygulamalarının evrensel ve yerel ölçeklerde sağlık, çevresel, sosyal ve hukuksal sonuçları konusunda bilgili X ECTS/İş Yükü Tablosu Aktiviteler Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) Sayı Süresi (Saat) Toplam İş Yükü 16 6 96 16 6 96 Ara Sınavlara/Ara Juriye Hazırlanma Süresi 2 10 20 Genel Sınava/Genel Juriye Hazırlanma Süresi 1 15 15 Laboratuar Uygulama Derse Özgü Staj Alan Çalışması Sınıf Dışı Ders Çalışma Süresi Sunum/Seminer Hazırlama Projeler Ödevler Küçük Sınavlar/Stüdyo Kritiği Toplam İş Yükü 227