MODERN FİZİĞİN DOĞUŞUNDA “MOR ÖTESİ KRİZİNİN” ROLÜ Öğretmen Olcay NALBANTOĞLU Hazırlayanlar A.Cumhur ÖZCAN Mustafa GÖNENÇER Okan GİDİŞ Tolga TOLGAY İÇİNDEKİLER 1. 2. 3. 4. Klasik Fiziğin Tanımı Klasik Kuramın Sorunları Kuantum Teorisinin Başlangıcı ve Gelişmesi Kaynakça TEŞEKKÜR Bu projede bize danışmanlık yapan çok sevgili fizik öğretmenimiz Olcay Nalbantoğlu’na ve bizden desteklerini esirgemeyen Ayşe Ruhşah Aşan’a çok teşekkür ederiz. KLASİK FİZİĞİN TANIMI Klasik fizikte, sağ duyuya göre, ‘orada bir yerde’ nesnel bir dünya vardır. O dünya kesin tanımlanmış matematiksel denklemlerin yönetiminde, açık ve belirlenebilir bir evrim içerisindedir. Newton’a göre bu nasıl böyleyse Maxwell ve Einstein’e göre de böyledir. Fiziksel gerçekliğin, bizden bağımsız olarak varolduğu bilinir ve ona hangi gözle baktığımızdan etkilenmez. Üstelik bedenlerimiz ve beynimiz o dünyanın bir parçasıdır ve aynı açık, belirlenebilir evrimin içinde oldukları kabul edilir. Tüm eylemlerimiz, davranışlarımızı bilinçli istemlerimizin de etkilediği hakkında ne düşünürsek düşünelim, bu denklemlerle belirlenebilir. KLASİK KURAMIN SORUNLARI Tüm görkemine karşın klasik dünyanın da karmaşık sorunları vardır. Bu sorunların kaynağı, iki tür fiziksel nesnenin bir arada varolmak zorunda olmalarıdır: her biri sonlu sayıda değişken ile tanımlanan parçacıklar; ve sonsuz sayıda parametre gerektiren alanlar. Bu ikili fizik yönünden gerçek bir ikililiğe sahip değildir. Parçacıkların ve alanların dengede olmalarını gerektiren bir sistemde tüm enerji parçacıklardan alınıp alanlara verilir. Bu, enerjinin “eş bölüşümü” denilen bir olayın sonucudur: denge durumunda, enerji, sistemin tüm özgürlük derecelerinin arasına eşit miktarda yayılır. Alanlar, sonsuz özgürlük derecelerine sahip oldukları için, parçacıkların payına hiçbir şey düşmez. Özellikle, klasik atomlar durgun olmadıkları için, parçacıkların tüm eylemi, alanların dalga kiplerinin enerjisine dönüşür. Maxwell denklemleri uyarınca, çekirdeğin üstüne sarmal hareketi ile ve saniyenin minik bir oranı içerisinde sonsuzluğa doğru giderek artan yoğunlukta elektromanyetik dalgalar üretmesi gerektiğidir. Ancak böyle bir şey gözlenmemiştir. Aslında, gözlenen olayı yani atomların kararlılığını, klasik kuramla açıklamak olası değildir. Atomlar ancak belirli frekanslarda elektromanyetik dalgalar, gözlemlendiği şekliyle keskin spektiral çizgileri yayabilirler. Üstelik bu frekanslar, klasik kuramda yer olmayan anlamsız kurallara bağlıdır. Bir başka örnek ise siyah cisim ışıması olarak tanınan olaydır. Belirli bir ısıda, elektromanyetik ışımanın parçacıklarla dengede olduğu bir cisim düşünün. 1900 yılında Rayleigh ve Jeans, bu durumda , tüm enerjinin alan tarafından sınırsız olarak emileceğini hesapladılar. Burada fiziksel yönden alışılmadık bir durum söz konusudur. (morötesi felaketi; enerji durmaksızın giderek artan frekanslarda alana yönelmelidir.) Ancak doğa kendisini bu felaketten sakınabilmektedir. Düşük alan salının frekanslarında, enerji Rayleigh ve Jeans tarafından hesaplandığı gibidir; fakat morötesi felaketini öngördükleri yüksek frekanslarda enerji dağılımının sonsuza akmadığı, aksine frekans arttıkça sıfıra yaklaştığını gözlemler göstermiştir. Verilen bir ısıda, çok özgün bir frekansta enerji en yüksek değerine ulaşır. ( Akkor halindeki bir demir parçasının ışıması veya güneşin sarı-beyaz ışığı, aslında, bunun en bilinen örnekleridir.) Işıma genliği Rayleigh-Jeans Gözlemlenen=Planck Frekans Kuantum Teorisinin Başlangıcı ve Gelişmesi Geçen yüzyılın başında ortaya atılan iki teori, fizik ve felsefe dünyamızı çok derinden etkiledi. Bunlar kuantum ve rölativite teorileriydi. Rölativite, tek başına kendi yolunda yürüyen bir adamın ürünüyken, kuantum teorisi birçok kişinin katkılarıyla oluşmuştu: Planck, Einstein, Bohr, De Broglie, Schroedinger, Heisenberg, Dirac ve Paui gibi... Ve her birine bu katkılarından dolayı Nobel ödülü verilmişti. Otuz yıl kadar süren bir arayışın sonunda da kuantum mekaniği denilen yeni bir bilim felsefesi doğdu. Kısaca tanımlamak gerekirse, atom altı parçacıklarının fizksel yapılarını ( Konum, momentum,...gibi), matematiksel bazı denklemlerle açıklama sistematiğidir. Her şey Max Planck (1858-1947)’in 1900’de Kara Cisim radyasyonu üzerine çalışırken ışığın “kuantum” dediği enerji paketçiklerinden oluştuğunu bulmasıyla başladı. Bulduğu formül, ışık enerjisinin dalga paketleri halinde aktarıldığını ifade ediyordu. Planck’ın yetkin örnek olarak aldığı Kara Cisim üzerindeki kuramsal çalışması 1900’de yayımlandı. Çalışmanın dayandığı temel düşünce şuydu : Madde, çeşitli frekansları paketler halinde bulunduran ve bu frekansları yayan bir kaynaktı. Gerçi bu düşüncenin yürürlükteki kurama ters düşen yanı yoktu : Ne var ki, Planck aynı zamanda madde dediğimiz kaynaktan çıkan frekansların sürekli değil de paketçikler şeklinde salındığı görüşünü ileri sürdü. Klasik fizik ise, enerjinin paketler şeklinde değil de sürekli bir akıntı (su dalgası gibi) olduğunu düşünüyordu. ____________Klasik fizik _ _ _ _ _ _ _ _ Kuantum fiziği Radyasyonun tanecik görünümünün daha basit bir örneği foto elektrik olayıdır. Einstein 1905 yılında yayımladığı makalelerinden birinde bu konuyu açıklıyordu. Fotoelektrik olayını basit olarak şöyle izah edebiliriz: Metal bir yüzeye düşürülen ışık, yüzeyden elektron koparır. Koparılan elektron, devrede bir akım meydana getirir. Fizikçiler, bu elektronun hızının şiddetinden bağımsız olmasını anlayamıyorlardı. Kopan elektronun hızı, ışığın rengine yani dalga boyuna bağlı olmalıydı. Einstein, ışığın aslında dalga olmayıp fotonlardan, yani kuantum paketçiklerinden oluştuğunu öne sürerek sonuca açıklama getirdi. Buna göre metal yüzeyden kopan elektronun hızı, kuantum paketçiğinin enerjisine veya frekansına bağlıdır. Işığın şiddetini artırmak, sadece kuantum paketçiklerini artırmak anlamına geliyordu. Dolayısıyla, ışığın şiddetini artırmak, yüzeyden koparılan elektron miktarını çoğaltır fakat, elektronun yüzeyden ayrılma hızına etki edemezdi. Böylece Einstein, ışığın bir dalga olmayıp, parçacıklar (fotonlar) topluluğu olması gerektiğini öne sürdü. Işığın parçacık gibi davranabileceğinin kesin delili, 1922’de Compton tarafından bulundu. Compton, yaptığı deneyde, fotonun momentumu varmış gibi parçacık hareketi yaptığını gözlemledi. Newton zamanından beri girişim ve kırınım deneyleri, ışığın dalga karakterinde olması gerektiğini söylüyordu.Işığın, parçacık yapısında yani enerji paketçikleri (kuantumlar) cinsinden olaylar henüz açıklanamamıştı. Görünürdeki bu çelişki, dalga-parçacık ikilemi olarak bilinir. Modern yoruma göre her iki karakter de doğrudur: Işık bazı olaylarda dalga, bazı olaylarda da parçacık gibi davranır. Ama iki karakteri de aynı anda gösteremez.Bu gelişmelerden sonra sıra, klasik fiziğin açıklamada yetersiz kaldığı atom yapısına gelmişti. Danimarkalı bilim adamı Niels Bohr (1885-1963) 1913’ te atom yapısına ilişkin günümüzde de kabul edilen bir teori oluşturdu. Bu teori, Planck’ın orjinal kuantum teorisi, Einstein’in ışığın foton kuramı ve Rutherford’un atom modellerinin fikirlerinin bir birleşimidir. Bohr teorisinin varsayımları şunlardır: 1) Elektron, protonun etrafında Coulomb (+ yükün – yükü çekmesi) çekim kuvvetinin etkisi altında, dairesel bir yörüngede hareket eder. 2) Elektron atom etrafında belirli yörüngelerde bulunur. Bu yörüngeler çeşitli enerji seviyelerdir. Bir üst yörüngeye geçmek için enerjiye ihtiyaç duyulur, alt seviyeye geçmek için de dışarıya enerji verilir. 3) Elektron ancak, enerjisi E1 olan kararlı bir durumdan, daha düşük enerjili bir E2 durumuna geçiş yaptığında enerji farkıyla orantılı bir enerji yayınlar. Bohr’un teorisi, hidrojen atomunda ve hidrojene benzeyen bir kez iyonlaşmış helyum iyonu ile iki kez iyonlaşmış lityum gibi iyonlarda başarıyla uygulandı. Bununla birlikte, teori daha karmaşık atomların ve iyonların spektrumlarını doğru olarak tanımlayamazdı. dalgalarını eski fizikçilerin aşina olduğu su ve Atomik sistemlerin yeni mekaniğine doğru ilk cesur adım, 1923 yılında Louis Victor De Broglie tarafından atıldı. De Broglie, doktora tezinde, fotonların dalga ve tanecik özelliklerine sahip olmalarından dolayı, belki bütün madde biçimlerinin tanecik özellikleri olduğu kadar, dalga özelliklerine de sahip olacakları tezini ileri sürdü. O zaman için hiçbir deneysel doğrulanması olmayan bu öneri, oldukça büyük, devrimci bir düşünce idi. De Broglie’ye göre elektronlar, hem tanecik hem dalga olarak ikili bir doğaya sahiptirler. Her elektrona, ona uzayda yol gösteren veya “yörünge çizen” bir dalga eşlik ediyordu. De Broglie bu savı ile 1929 yılında Nobel ödülü aldı. Schrödinger, 1926 yılında “Schrödinger Dalga Denklemi” olarak izah ettiği elektron ses dalgalarının denklemleri gibi matematiksel bir denklemle ifade etti. Bu nedenle Schrödinger’in dalga mekaniği, Max Planck ve de Broglie gibi fizikçiler tarafından kabul gördü. Schrödinger, Kuantumun dışladığı neden-sonuç bağını dalga denklemi yardımıyla ortadan güya kaldırıyordu. Ona göre elektronların bir durumdan bir başka duruma ani değişimlerinin sebebini. Elektron geçişlerini bir keman telinin titreşimleri gibi, bir notadan diğerine geçiş olarak yorumladı. Paul Adrian Maurica Dirac (1902-1984),1926’ da özel rölativite kavramlarından yararlanarak. Schröndinger dalga denklemini değişik biçimde ortaya koydu. Dirac’ın fiziğe ikinci önemli katkısı, 1928’de özel rölativite teorisini kuantum mekaniği ile uyuşturması olmuştur. 1927’de , Werner Heisenberg (1901-1976) ilk kez bir parçacığın konumunu ve momentumunu aynı anda son derece doğrulukla belirlemenin olanaksız olacağını öne sürdü. Bu demektir ki, bir parçacığın tam konumunu ve tam momentumunu aynı anda ölçmek fiziksel olarak olanaksızdır. Örneğin elektronu ele alalım. Çekirdek etrafında hızı en az, 1010 cm/sn içinde tanımlanmalıdır. Aksi halde, atomun çekiminden kurtulup dışarıya fırlayacaktır. Bu, elektronun konumunda yaklaşık 108 cmlik bir belirsizliğe denk gelir. Bu ise atomun toplam boyutudur. Elektron, atom etrafında o derece yayılmıştır ki, yörüngenin kalınlığı atomun yarı çapına eşit olur. Yani, elektron aynı anda çekirdeğin her tarafında bulunabilir. (Dünyanın, Güneşin hemen dibinden şimdiki yörüngesine kadar bütün alanlarda bulunma ihtimali gibi) Bu durum, “fiziksel olarak şu cisim çoğunlukla burada,ama kısmen orada, ara sıra da uzakta...” gibi ifadelerin kullanılmasını gerektirir. Neticede, Kuantum fiziği tek ve kesin bir sonu değil, birtakım olası sonuçlar öngörür ve her birinin ne kadar mümkün olduğunu söyler.