KPSS 2017 - Pegem.net

advertisement
önce bİz sorduk
KPSS
2017
120 Soruda
92
soru
GENEL YETENEK - GENEL KÜLTÜR
GEOMETRİ
konu anlatımlı
pratik bilgiler
sınavlara en yakın özgün sorular ve açıklamaları
çıkmış sorular ve açıklamaları
Eğitimde
30. yıl
Kerem Köker / Kenan Osmanoğlu
KPSS GEOMETRİ KONU ANLATIMLI KİTAP
ISBN 978-605-318-483-6
Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.
© Pegem Akademi
Bu kitabın basım, yayın ve satış hakları
Pegem Akademi Yay. Eğt. Dan. Hizm. Tic. Ltd. Şti.ne aittir.
Anılan kuruluşun izni alınmadan kitabın tümü ya da bölümleri,
kapak tasarımı; mekanik, elektronik, fotokopi, manyetik, kayıt
ya da başka yöntemlerle çoğaltılamaz, basılamaz, dağıtılamaz.
Bu kitap T.C. Kültür Bakanlığı bandrolü ile satılmaktadır.
Okuyucularımızın bandrolü olmayan kitaplar hakkında
yayınevimize bilgi vermesini ve bandrolsüz yayınları
satın almamasını diliyoruz.
“Bu kitapta yer alan geçmiş yıllarda ÖSYM'nin yapmış olduğu sınavlardaki ÇIKMIŞ
SORULAR'ın her hakkı ÖSYM'ye aittir. Hangi amaçla olursa olsun, tamamının veya bir
kısmının kopya edilmesi, fotoğraflarının çekilmesi, herhangi bir yolla çoğaltılması ya da
kullanılması, yayımlanması ÖSYM'nin yazılı izni olmadan yapılamaz. Pegem Akademi
Yayıncılık telif ücreti ödeyerek bu izni almıştır.”
34. Baskı: 2016, Ankara
Yayın-Proje: Özlem Sağlam
Dizgi-Grafik Tasarım: Didem Kestek
Kapak Tasarımı: Gürsel Avcı
Baskı: Vadi Grup Ciltevi A.Ş.
İvedik Organize Sanayi 28. Cadde 2284 Sokak No:105
Yenimahalle/ANKARA
(0312 394 55 91)
Yayıncı Sertifika No: 14749
Matbaa Sertifika No: 26687
İletişim
Karanfil 2 Sokak No: 45 Kızılay / ANKARA
Yayınevi: 0312 430 67 50 - 430 67 51
Yayınevi Belgeç: 0312 435 44 60
Dağıtım: 0312 434 54 24 - 434 54 08
Dağıtım Belgeç: 0312 431 37 38
Hazırlık Kursları: 0312 419 05 60
İnternet: www.pegem.net
E-ileti: pegem@pegem.net
SUNU
Değerli Adaylar;
Bu kitap Kamu Personeli Seçme Sınavı (KPSS) Genel Yetenek Testinde
önemli bir yer tutan “Geometri” kapsamındaki 3 veya 4 soruyu etkili bir şekilde çözebilmeniz amacıyla hazırlanmıştır.
Kitap, sorulmuş ve sorulması olası soruların titizlikle incelenmesiyle meydana getirilmiş olup;
GEOMETRİ
- Geometrik Kavramlar ve Doğruda Açılar,
- Çokgenler ve Dörtgenler,
- Çember ve Daire,
- Analitik Geometri ve
- Katı Cisimler
bölümlerinden oluşmaktadır.
Kitapta; bölümlerin sınav formatına uygun ve soru çözümünü kolaylaştıracak bir şekilde ele alınmasına ve bilgilerin açık ve
anlaşılır bir dille ifade edilmesine özen gösterilmiştir.
Her ünitenin sonunda,
- çıkmış sorular ve
- cevaplı testlere;
yer verilmiştir.
Bu kitabın hazırlanmasında yardım, destek ve katkılarını esirgemeyen Pegem Akademi sınav komisyonuna teşekkürü bir
borç biliriz.
Bu kitap, uzun bir birikimin ve yoğun bir emeğin ürünüdür. Kitapla ilgili görüş ve önerileriniz bu ürünün niteliğini daha da
arttıracaktır. Değerli görüş ve önerilerinizi lütfen bizimle pegem@pegem.net aracılığıyla paylaşınız.
Kitabın çalışmalarınızda yararlı olması dileğiyle, KPSS’de ve meslek hayatınızda başarılar.
Kerem Köker - Kenan Osmanoğlu
İÇİNDEKİLER
1. BÖLÜM
GEOMETRİK KAVRAMLAR VE
DOĞRUDA AÇILAR...................................................1
Geometrik Kavramlar ...............................................2
Tanımsız Kavramlar ..................................................2
Açılar..........................................................................2
Açının Ölçüsü ...........................................................2
Açının Düzlemde Ayırdığı Bölgeler .........................2
Açı Ölçü Birimleri .....................................................2
Derecenin Alt Birimleri .............................................3
Açı Çeşitleri ...............................................................3
Dar Açı .......................................................................3
Dik Açı .......................................................................3
Geniş Açı ...................................................................3
Doğru Açı ..................................................................3
Tam Açı ......................................................................3
Komşu Açılar ............................................................3
Açıortay .....................................................................3
Tümler Açılar .............................................................4
Bütünler Açılar ..........................................................4
Ters Açılar .................................................................5
Paralel İki Doğrunun Bir Kesen ile
Yaptığı Açılar .............................................................5
Paralel İki Doğrunun Birden Çok Kesen
ile Meydana Getirdiği Açılar ....................................5
Kenarları Paralel Açılar ............................................7
Kenarları Dik Açılar ..................................................7
Üçgenler ....................................................................10
Üçgen Çeşitleri .........................................................10
Ağırlık Merkezi ..........................................................25
Kenarortay Bağıntıları ..............................................27
Özel Üçgenler............................................................29
İkizkenar Üçgen ........................................................29
Eşkenar Üçgen..........................................................31
Üçgende Alan ............................................................35
Üçgende Benzerlik ...................................................40
Açı – Açı – Açı Benzerlik Kuralı ...............................40
Tales Teoremi ............................................................42
Temel Orantı Teoremi ...............................................42
Çapraz Tales Teoremi ...............................................43
Kenar – Açı – Kenar Benzerlik Kuralı .....................44
Kenar – Kenar – Kenar Benzerlik Kuralı .................45
Üçgende Açı – Kenar Bağıntıları .............................48
Üçgen Eşitsizliği .......................................................48
Çıkmış Sorular ..........................................................53
Cevaplı Test - 1 ........................................................56
Cevaplı Test - 2 ........................................................58
Cevaplı Test - 3 ........................................................60
Cevaplı Test - 4 ........................................................62
Cevaplı Test - 5 ........................................................64
Cevaplı Test - 6 ........................................................66
Cevaplı Test - 7 ........................................................68
Cevaplı Test - 8 ........................................................70
Cevaplı Test - 9 ........................................................72
Cevaplı Test - 10 ......................................................74
Cevaplı Test - 11 .......................................................76
Cevaplı Test - 12 ......................................................78
Cevaplı Test - 13 ......................................................80
Açılarına Göre Üçgenler...........................................10
Kenarlarına Göre Üçgenler ......................................10
Üçgende Temel ve Yardımcı Elemanlar ..................11
Yükseklik ...................................................................11
Açıortay .....................................................................11
Kenarortay.................................................................11
Üçgende Açılar ile İlgili Özellikler ...........................12
Dik Üçgen ..................................................................16
Pisagor Teoremi........................................................16
Öklid Bağıntıları ........................................................17
Kenarlarına Göre Özel Dik Üçgenler .......................18
Açılarına Göre Özel Dik Üçgenler ...........................19
Üçgende Açıortay Teoremleri ..................................21
İç Açıortay Teoremi...................................................22
Dış Açıortay Teoremi ................................................23
Üçgende Kenarortay Teoremleri .............................25
2. BÖLÜM
ÇOKGENLER VE DÖRTGENLER.............................83
Çokgenler ..................................................................84
Dışbükey ve İçbükey Çokgenler..............................84
Düzgün Çokgen ........................................................85
Dörtgenler .................................................................90
Dörtgenlerde Alan ....................................................91
Paralelkenar ..............................................................93
Paralelkenarda Alan .................................................94
Paralelkenarın Alan Özellikleri ................................94
Paralelkenarda Uzunluk İle İlgili Özellikler .............96
Eşkenar Dörtgen .......................................................97
Dikdörtgen ................................................................98
Kare............................................................................100
4. BÖLÜM
Yamuk – Deltoid ........................................................102
ANALİTİK GEOMETRİ...............................................147
İkizkenar Yamuk........................................................105
Noktanın Analitik İncelenmesi .................................148
Dik Yamuk .................................................................107
Analitik Düzlem .........................................................148
Deltoid .......................................................................107
İki Nokta Arasındaki Uzaklık ....................................149
Çıkmış Sorular ..........................................................108
Doğrusal Noktalar.....................................................150
Cevaplı Test - 1 ........................................................110
Doğrusal Olmayan Noktalar ....................................152
Cevaplı Test - 2 ........................................................112
Doğrunun Analitik İncelenmesi ...............................155
Cevaplı Test - 3 ........................................................114
Doğrunun Eğim Açısı ve Eğimi ...............................155
Cevaplı Test - 4 ........................................................116
Doğrunun Grafiğinin Çizimi .....................................157
Cevaplı Test - 5 ........................................................118
Doğrunun Denklemleri .............................................158
Özel Doğrular ............................................................160
3. BÖLÜM
ÇEMBER VE DAİRE ..................................................121
Çemberde Açı ...........................................................122
Çemberde Yardımcı Elemanlar ................................122
Çemberde Yay ve Açı Özellikleri .............................123
Merkez Açı .................................................................123
Çevre Açı ...................................................................124
Teğet Kiriş Açı ...........................................................125
İki Doğrunun Birbirine Göre Durumları ..................160
Doğru Demeti ............................................................162
Simetriler ...................................................................165
Noktanın Simetriği ....................................................165
Doğrunun Simetriği ..................................................168
Eşitsizlikler ................................................................170
Çıkmış Sorular ..........................................................172
Cevaplı Test...............................................................173
İç Açı ..........................................................................125
Dış Açı .......................................................................125
5. BÖLÜM
Çemberde Kiriş Yay Özellikleri ................................127
KATI CİSİMLER .........................................................175
Kirişler Dörtgeni .......................................................127
Prizma ........................................................................176
Çemberde Uzunluk ...................................................128
Dikdörtgenler Prizması ............................................177
Bir Noktanın Bir Çembere Göre Kuvveti ................128
Küp.............................................................................179
Kuvvet Ekseni ...........................................................130
Silindir .......................................................................179
İki Çemberin Ortak Teğetleri ....................................131
Dönel Silindir ............................................................180
İki Çemberin Birbirine Göre Durumları ...................133
Piramit .......................................................................182
Üçgenin Çemberleri..................................................133
Düzgün Piramit .........................................................182
Üçgenin İç Teğet Çemberi........................................133
Kesik Piramit .............................................................183
Üçgenin Dış Teğet Çemberi .....................................134
Koni............................................................................183
Teğetler Dörtgeni ......................................................134
Küre ...........................................................................185
Dairede Alan ..............................................................135
Çıkmış Sorular ..........................................................186
Dairenin Alanı ve Çevresi ........................................135
Cevaplı Testler - 1 ....................................................187
Daire Diliminin Alanı .................................................135
Cevaplı Testler - 2 ....................................................189
Çember Yayının Uzunluğu .......................................135
Daire Kesmesinin Alanı ............................................135
Daire Halkasının Alanı ..............................................136
Çemberde Benzerlik .................................................137
Çıkmış Sorular ..........................................................139
Cevaplı Test - 1 ........................................................140
Cevaplı Test - 2 ........................................................142
Cevaplı Test - 3 ........................................................144
Geometrİk Kavramlar ve
Doğruda Açılar
� GEOMETRİK KAVRAMLAR
� DOĞRUDA AÇILAR
Yı
2005
2
� ÜÇGENLER
2006
-
� ÜÇGEN ÇEŞİTLERİ
� ÜÇGENDE TEMEL VE YARDIMCI ELEMANLAR
lla
So ra G
ru ö
A re Ç
na
liz ıkm
ler ış
i
2007
2
� ÜÇGENDE AÇILAR
� DİK ÜÇGENLER
2008
2
� ÜÇGENDE AÇIORTAY TEOREMLERİ
� ÜÇGENDE KENARORTAY TEOREMLERİ
2009
� ÜÇGENDE ALAN
1
� ÜÇGENDE BENZERLİK
2010
� ÜÇGENDE AÇI – KENAR BAĞINTILARI
1
2011
1
2012
1
2013
1
2014
2016
1
...
2015
1
-
ren her an özlemlerimize açıktır; ama onun dilini e bu dilin yazıldığı har leri
öğrenmeden e ka ramadan anlaşılamaz.
ren matematik diliyle yazılmıştır;
har leri üç enler, daireler e diğer eometrik biçimlerdir. Bunlar olmadan tek
sözcüğü bile anlaşılamaz; bunlarsız ancak karanlık bir labirente dalanılır.
Galıleo
GE ME
İK KA
AM A
ED
DA A
GEOMETRİK KA RAMLAR
AÇILAR
Tanımsı Kavramlar
Başlan ıç
okta, doğru, düzlem ibi ka ramlar tanımsız ka ramlardır.
aynı olan iki ışının bir-
N
Yani;
ta
Kalem ucunun k ğıt üzerine bıraktığı işaret eya izdir.
oktanın belli bir alanı, hacmi eya boyutu yoktur. okta
büyük har le österilir.
A
D
noktası
B
B noktası
ru
İki ucu sınırsız aynı doğrultulu noktaların kümesidir.
A
B
d
%
Açının
lç s
6AB ve 6AC
ışınları arasında
doğru parçası 6AB@ sembolü ile österilir.
6CD@ " CD doğru parçası
CD " CD doğru parçasının uzunluğu olarak österilir.
Işın
Bir ucu başlan ıç noktası olup diğer ucu sonsuza iden
noktaların oluşturduğu kümeye ışın denir.
A
B
d
nir. er At na
B ışını diye okunur.
Yarı D
ru
arasında
bir tek reel sayı karşılık elir. Bu
α
açısının ya da A
C
B açısının ölçüsü denir.
açısının ölçüsü α dır.
%
ve m (BAC) = m(At ) = α eya
%
s ( BAC ) = s(At ) = α ile österilir.
Eş Açılar
lçüleri eşit olan açılara eş açılar denir.
Yani; m (At ) = m(Bt ) & A ile B açýlarý eş açılardır.
Açının D
lemde A ırdı ı Böl eler
erhan i bir açı düzlemi üç arklı böl eye ayırır. Bu böleler
B
.
çının kendisi
I.
.
çının iç böl esi
.
Açı
noktasının çı6AB ışınından başlan ıç noktası yani
kartılması ile elde edilen noktaların kümesine AB arı
d rusu denir.
B
d
@AB " AB ışını diye okunur.
D
ile
çının dış böl esi
II.
α
A
C
III.
6AB "
A
B
kalan böl eye At nın ölçüsü de-
Yani B
B
%
açısı BAC ya da CAB açısı ile österilir.
D
A
C
ya da
B açısıdır.
reel sayıya B
iki nokta ile bu iki nokta arasında kalan noktaların birleşim kümesine doğru parçası denir.

A
[ AB ∪ [ AC =
6AB ve 6AC
ışınlarının birleşimi ile A
Doğrular enelde küçük har le temsil edilirler. d doğrusu
eya AB diye sembolize edilebilir.
ru Parçası
B
leşimine Açı denir.
B
rneğin;
noktaları
oluşan açı B
2
PEGEM AKADEMİ
A
lem
Bir masanın üstü, dur un su yüzeyi ibi tamamen düz e
aynı zamanda her yöne sınırsız olan noktaların oluşturduğu kümeye d lem denir.
lç Birimleri
Dere e Grad Rad an açı ölçü birimleridir.
enelde
ölçü birimi olarak derece kullanılır. 20 o ,40 o ,... şeklinde
österilir.
Bu üç arklı açı ölçü birimleri arasındaki bağıntıyı şöyle
erebiliriz,
D: Derece
G: Grad
adyan olmak üzere
D
G
R
=
=
bağıntısı ardır.
180 200 π
3
Örnek
Not
Bir ışının başlan ıç noktası etra ında bir tur döndürülmesi ile oluşan açı 360 o , 400 Grad ve 2π
adyandır.
Yu arıda i verilenlere
α aç dere edir
Dere enin Alt Birimleri
_
1 o " Bir derece bb 1 o = 60'
1' " Bir dakika ` 1' = 60''
b o
1'' " Bir saniye a1 = 3600'' dýr.
C
α
2α
B
D
Çö m
, O, B noktaları doğrusal olduğundan doğru açı tanımı
ereği 180 o lik açı meydana etirirler.
Yani; 3α + 7α + 2α = 180 o dir.
Dar Açı
B
lçüsü 0 o ile 90 o arasında olan
açılara dar açı denir.
Yani;
0 o < a < 90 o + α dar açýdýr.
& 12α = 180 o
& α = 15 o bulunur.
α
A
C
%
lçüsü 90 o olan açıya di açı denir.
Yani; α = 90 o + α dik açýdýr.
K mşu Açılar
Köşeleri e birer kenarı ortak olan C
iç böl elerinin kesişimleri boş
küme olan açılara
mşu açılar
denir.
B
Di Açı
%
Yani; COB
açıdır.
α
A
C
B
O
ile BOA komşu iki
%
%
Yani; m ( COB ) = m ( BOA ) dır.
%
6OB ye COA nın açıortayı denir.
o
lçüsü 90 ile 180 arasında B
olan açılara eniş açı denir.
α
Yani;
90 o < a < 180 o + α geniþ açýdýr.
A
C
6OC ile 6OA ye açıortayın kolları kenarları denir.
C
B
O
A
Örnek
ru Açı
lçüsü 180 o olan açıya d
ru açı denir.
A
AÇIORTAY
çıyı iki eşit açıya ayıran ışına açırta denir.
Geniş Açı
o
D
7α
O
A
öre
B
AÇI ÇE İTLERİ
D
, O, B noktaları doğrusal,
%
%
m ( DOB ) = 2α , m ( COD ) = 7α
%
ve m ( AOC ) = 3α
-
α =180°
C
Yani;
α = 180 o + α doðru açýdýr.
A
D
, O, B noktaları doğru-
B
sal 6OC ile 6OF açıortay
%
m ( DOE ) = 80 o
E
80°
C
O
A
%
F
B
Yu arıda i verilenlere öre m ( COF ) aç dere edir
B
Tam Açı
lçüsü 360 o olan açıya
tam açı denir.
Yani;
α = 360 o + α tam açýdýr.
α =360°
A
B
D
4
Çö
T MLER AÇILAR
m
, O, B noktaları doğrusal olduğundan meydana elen
açıların ölçüleri toplamı 180 o
D
E
dir.
F
%
%
α 80° β
C
m ( AOC ) = m ( COD ) = α ,
β
α
%
%
O
A
B
m ( EOF ) = m ( FOB ) = β
B
lçüleri toplamı 90 o olan iki açıya
t mler iki açı denir.
C
α
Yani α ile β bulundukları açıların
ölçüleri olmak üzere
dersek
α + β = 90 o + a ile β tümler iki açıdır.
2α + 2β + 80 o = 180 o & 2a + 2b = 100 o & a + b = 50 o
α’ nın tümleri 90 o - a
%
%
m ( COF ) = α + β + 80 o & m(COF) = 130 o bulunur.
nın tümleri 90 o - b dır.
β
O
A
B T NLER AÇILAR
Örnek
Komşu iki açının açıortayları arasında kalan açı 54 o dir.
lçüleri toplamı 180 o olan iki
açıya
t nler açılar denir.
Buna öre u i i açının ölç leri t
dir
Yani; α ile β bulundukları
açıların ölçüleri olmak üzere
A) 100
Çö
B) 104
C) 106
lamı aç dere e-
D) 108
E) 110
m
%
%
BOC ile COA komşu iki açıdır. 6OD ile 6OE açıortaydır.
%
%
%
m ( DOE ) = 54 o erilmiş m ( BOD ) = m ( DOC ) = α ,
%
%
α
B
α’ nın bütünleri 180 o - a
β’ nın bütünleri 180 o - b dır.
%
Örnek
dir.
Bir açının
atının 5 o a lası a nı açının t mlerine
eşit ldu una öre açının
t nleri aç dere edir
%
Buradan m ( BOC ) + m ( COA ) = 2α + 2β
B
& 2 ( α + β ) = 108 o bulunur.
S
o
54
Çö
Not
6OD açıortay, 6OB ile 6OA açıortayın kolları olmak üzere
6CK@ = 6OB , 6DL@ = 6OB ,
B
L
6CE = 6OA ve 6DF@ = 6OA
DF ve
KO = EO , LO = FO dur.
K
O
D
T mleri
90 o - a dır.
α
çıortay üzerinde alınan herhan i bir noktanın,
açının kollarına olan dik uzunlukları birbirine eşittir.
D
m
Açı
çizilirse
=
=
CK
CE , DL
O
A
α + β = 180 o + α ile β bütünler iki açıdır.
m ( COE ) = m ( EOA ) = β dersek m ( DOE ) = α + β = 54 o
%
C
β
Denklem kurulursa;
4α + 5 o = 90 o - α dýr.
5α = 85 o & α = 17 o bulunur.
O halde açının bütünleri
180 o - α = 180 o - 17 o = 163 o bulunur.
C
E
F A
Örnek
Bütünler iki açıdan biri diğerine bölündüğünde bölüm ,
kalan 10 o dir.
Buna öre
ç
B
açı aç dere edir
D
5
Çözüm:
(ii) İç ters açılar
Bütünler iki açı
d1 // d2 ise
α ile β olsun
ct ile xt ve dt ile yt iç ters açılardır. İç ters açıların ölçüleri
O halde α + β = 180 o dir.
birbirine eşittir.
Verilen denklem yazılacak olursa
Yani; c = x ve d = y dir.
4
= 4
10�
dir.
(iii) Dış ters açılar
10�
d1 // d2 ise
Buradan α = 4β + 10 o denklemi
at ile zt ve bt ile tt dış ters açılardır.
α + β = 180 o denkleminde yerine yazılacak olursa
Dış ters açıların ölçüleri birbirine eşittir.
4β + 10 o + b = 180 o & 5b = 170 o
Yani; a = z ve b = t dir.
& β = 34 o
& α = 146 o dýr.
(iv) Karşı durumlu açılar
O halde küçük açı β = 34° bulunur.
d1 // d2 ise
ct ile yt ve dt ile xt karşı durumlu iki açıdır. Karşı durumlu
açıların ölçüleri toplamı 180 o dir.
TERS AÇILAR
Kesişen iki doğrunun oluşturduğu
d1
b
açılardan birbirine komşu olmayan
c
açılara ters açılar denir.
Yani; c + y = 180 o ve d + x = 180 o dir.
a
Not
d
Yani; Kesişen d1 ve d2 doğrula-
d2
rında at ile ct , bt ile dt açıları ters
Karşı durumlu açıların açıortayları birbirine diktir.
Yani; d1 // d2 6AC ile 6BC
d3
A
açıortay & 6AC = 6BC dir.
açılardır.
Ters açıların ölçüleri birbirine eşittir. a = c ve b = d dir.
d1
C
d2
B
PARALEL İKİ DOĞRUNUN BİR KESEN İLE
YAPTIĞI AÇILAR
d1 // d2 , a, b, c, d, x, y, z, t bulun-
dukları açıların ölçüleridir.
b
a
c
d
y
x
z
t
d1
d2
(i) Yöndeş açılar
d1 // d2 ise
at ile xt , bt ile yt , dt ile tt , ct ile zt yöndeş açılardır. Yöndeş
açıların ölçüleri birbirine eşittir.
=
Yani;
a x=
, b y=
, c z=
, d t dir.
PARALEL İKİ DOĞRUNUN BİRDEN ÇOK
KESEN İLE MEYDANA GETİRDİĞİ AÇILAR
A
(i) d1 // d2 ; d3 + d 4 = "B ,
d3
d1
B
α , δ , β bulundukları açıların
ölçüleri olmak üzere α + δ = β
dır.
C
d2
d4
A
(ii) d1 // d2 ;
α , β, δ bulundukları açıların ölçüleri olmak üzere
α + β + δ = 360 o dir.
Not
d1
B
C
Paralel doğrular n doğruyla kesilirse meydana gelen aynı yönlü açıların ölçüleri toplamı n : 180 o dir.
d2
Download