hareket - rahmgol

advertisement
HAREKET
GRAFİKLER VE YARARLANMA
DÜZGÜN DOĞRUSAL HAREKET
DÜZGÜN DEĞİŞKEN DOĞRUSAL
HAREKET
KUVVETİN HAREKETE ETKİSİ
SÜRTÜNMELİ YÜZEYDE HAREKET
HAREKET
Hareket
Galileo
Çok eski zamanlardan beri
insanların ilgisini çeken bir
konu olmakla beraber,
sistematiğinin oluşması ancak
1600'lü yıllara denk
gelmektedir. Bu çağda batı
dünyasında ortaya çıkan
Galileo ve Newton, hareket
biliminin sistematik özelliğinin
oluşmasının temelini
atmışlardır.
Newton
HAREKET
Hareket : Sabit kabul edilen bir noktaya göre cismin konumundaki
değişikliğe hareket denir.
Bir cismin hareketi sabit kabul edilen bir noktaya göre
tanımlanmalıdır. Bu sabit noktaya referans noktası denir.
Bir cismin hareketinin, üzerine uygulanan kuvvetler tarafından
meydana getirildiğini karşılaştığımız yüzlerce olaydan biliyoruz.
Bir kuvvetin etkisi ile cismin hareketi sırasında izlediği yola yörünge
denir.
Hareketin şekli yörüngenin şekline göre isimlendirilir.
Yörünge düz ise doğrusal hareket,
Yörünge eğri ise eğrisel hareket,
Yörünge daire ise dairesel hareket
olarak isimlendirilir.
HAREKET
Filmde uçağın Doğrusal,Eğrisel ve Dairesel hareketlerini
görebiliyoruz.
HAREKET
Konum : Hareketli bir cismin başlangıç noktasına göre, bulunduğu
yere konum denir.
Başlangıç noktasını cismin bulunduğu noktaya birleştiren
vektöre konum vektörü denir.
K
L
Başlangıç
Noktası
-200m
-100m
A
M
+100m
N
+200m
Şekildeki cisim N noktasında ise A noktasına göre konumu +200m’dir.
Cisim K noktasında olursa konumu A noktasına göre –200m’dir.
Başlangıç noktasına sağı (+) pozitif, solu (–) negatif olarak seçilmiştir.
HAREKET
Yer değiştirme : Bir cismin son konumu ile ilk konumu arasındaki
farka yer değiştirme denir.
Vektörel bir büyüklüktür. ∆X sembolü ile gösterilir.
Yer değiştirme = Son konum – İlk konum
∆X = X2 - X1
A
B
Yukarıdaki şekilde de görüldüğü gibi yer değiştirme, kat edilen
mesafeden farklıdır. A noktasından hareket eden bir nesne B noktasına
ulaşmak için doğrusal bir hareket yapmasa da yer değiştirmesi bir vektör
oluşturacak biçimde doğrusaldır. Burada yer değiştirmenin kat edilen
mesafeden bağımsız olduğu görülmektedir.
Kat edilen mesafe 500 metre , yer değiştirme ise 200 metre olabilir.
HAREKET
Şekildeki topun ilk konumu -10 m dir. Daha sonra top sağa doğru
hareket edip ikinci konumuna yani +15 m ye gelmiştir.
Yer değiştirme = son konum - ilk konum
Şekildeki topun yer değiştirmesi = +15 - (-10) = +25 metredir.
HAREKET
Hız : Hareketli bir cismin birim zamandaki yer değiştirme miktarına
“hız” denir. Hız, V harfi ile gösterilir, birimi m/s dir. Hız vektörel bir
büyüklüktür.
∆X = yol(m)
Δx
X2–X1
∆t = zaman(s)
V=
=
V = hız (m/s)
Δt
t2– t1
Hız =
Zaman
Yer değiştirme
Hız
Sembol
t
x
V
Birim
saniye
metre
metre/saniye
Birimin kısa yazımı
s
m
m / sn
HAREKET
Anlık (Ani) Hız : Hareketli bir cismin herhangi bir andaki hızına
anlık hız denir. Anlık hız vektörel bir büyüklüktür.
Δx
V ani = tan 0 =
X2 – X1
=
Δt
t2 – t 1
Otalama Hız : Hareketli bir cismin toplam yer değiştirmesinin
zamana bölümü cismin ortalama hızını verir.
Δx
V ort =
X2 – X1
=
Δt
t2 – t 1
HAREKET
İvme ( a ) :
Hareketli bir cismin hızının birim zamandaki
değişim miktarına ivme denir. İvme vektörel bir büyüklüktür.
Hareketli bir cismin Δt zaman aralığındaki Hız değişimi ΔV ise
hareketli cismin ivmesi,
ΔV
a=
V son – V ilk
=
ifadesinden bulunur
Δt
t son – t ilk
Anlık ( Ani ) İvme : Hareketli bir cismin Δt süresi içerisinde
herhangi bir andaki ivmesine anlık ivme denir.
ΔV
a ani = tanØ =
V2–V1
=
Δt
ifadesinden bulunur
t2– t1
HAREKET
Ortalama İvme
:
Hareketli bir cismin Δt zaman aralığında
değişik hızlarla hareket ederse, hareketli cismin hızındaki değişim
miktarına ortalama ivme denir.
ΔV
a ort = tanØ =
V2–V1
=
Δt
ifadesinden bulunur
t2– t1
Grafikler ve Yararlanma
Konum
Konum – Zaman grafiği :
Eğim hareketli cismin hızını verir
x

t
Eğim = tan  =
Zaman
x
t
= V
Yukarıdaki animasyonda sabit hızla ilerleyen iki aracın KONUM-ZAMAN
grafiğini görülüyor.
Mavi aracın
t = 0 anındaki konumu 20,
Kırmızı aracın t = 4 anındaki konumu 0 dır.
Grafikler ve Yararlanma
Konum–zaman
grafiğinde eğim, hızı
verir. Eğimin değişimi
nasılsa, hızın değişimi
de o şekilde olur.
Ayrıca eğimin işareti
hızın işaretini belirtir.
Eğimin
ve
hızın
işaretleri
hareketin
yönünü belirtirler. Hızın
işareti pozitif (+) ise,
araç (+) yönde, negatif
ise araç (–) yönde
hareket ediyordur.
Şekildeki konum–zaman grafiğinde,
 I. Aralıkta teğetin eğimi arttığı için hızda artıyordur.
Eğimin işareti (+) olduğundan (+) yönde hızlanan hareket yapıyordur.
 II. Aralıkta eğimin işareti (+), büyüklüğü ise azaldığından, (+) yönde
yavaşlayan hareket yapıyordur.
 III. Aralıkta eğim sıfır olduğundan hız da sıfırdır. Yani araç duruyordur.
 IV. Aralıkta eğim (–) yönde arttığı için hareket (–) yönde hızlanandır.
 V. Aralıkta eğim sabit ve işareti (–) olduğundan araç (–) yönde sabit hızlı
hareket yapıyordur.
Grafikler ve Yararlanma
Hız
Hız – Zaman grafiği :
Eğim ivmeyi, altındaki alan ise yer değiştirmeyi verir.
x

t
V
Eğim = tan  =
Zaman
V
t
= a
Yukarıdaki animasyon, hızları farklı iki aracın HIZ-ZAMAN grafiğini gösteriyor.
Araçların hızlarının sabit olduğunu grafiklerin yatay çıkmasından anlayabiliriz.
Mavi araç
t = 0 s anında yaklaşık 4,5 m/s hız ile
Kırmızı araç ise t = 4 s anında yaklaşık 20 m/s hız ile hareket ediyor.
Grafikler ve Yararlanma
Hız–zaman grafiğinin eğimi ivmeyi
verir. Eğimin değişimi ve işareti
ivmenin değişimini ve işaretini verir.
 I. aralıkta eğim sabit ve işareti (+)
olduğundan, ivme sabit ve işareti (+)
dır. Benzer yorumu diğer aralıklar için
de yapabiliriz.
 Grafik parçaları ile zaman ekseni arasında kalan alan yer değiştirmeyi
verir.
 Zaman ekseni üzerinde kalan (+) alan pozitif yöndeki yer değiştirmeyi,
altında kalan (–) alan ise, negatif yöndeki yer değiştirmeyi verir. Toplam
yer değiştirme alanların cebirsel toplamından bulunur.
 Hızın işaret değiştirdiği yerde araç yön değiştiriyordur.
Grafikler ve Yararlanma
İvme
İvme – Zaman grafiği :
a
Altındaki alan hızdaki değişmeyi ( V ) verir .
V
t
a
.V = a.
Zaman
Toplam hız değişimi alanların cebirsel toplamından bulunur. Cismin ilk hızı
v0, toplam hız değişimi Dv ise, son hız vS = v0 + Dv eşitliğinden bulunur .
Cisimlerin hareketlerinde gidilen yolun durumuna göre bazen hızlanma
bazen de yavaşlama olur. Eğer cisim gittikçe hızlanıyorsa hız büyürken,
yavaşlayan cisimlerde hız küçülür. Hızlanan cisim bir an öncesinden daha
çok yol almaya, yavaşlayan cisim de daha az yol almaya başlar.
DÜZGÜN DOĞRUSAL HAREKET ( sabit hızlı )
Bir doğru boyunca eşit zaman aralıklarında eşit yol alan cismin hareketine
düzgün doğrusal ( sabit hızlı ) hareket denir.Hareketin hızı sabit olduğundan
ivmesi sıfırdır. Sabit hızlı harekette hareketlinin hızı zamanla değişmez.
Hareketli cismin t zamanında aldığı yol X = V . t ifadesinden bulunur.
Artı Yönde Sabit Hızlı Hareket
Hareketli cismin ( + ) yönde eşit zaman aralıklarında eşit yol alması demektir.
Yukarıdaki hareketli artı seçilen yönde sabit hızla ilerlemektedir.
Hareketin konum-zaman, hız-zaman, ivme-zaman grafikleri sıralarıyla
verilmişlerdir.
DÜZGÜN DOĞRUSAL HAREKET ( sabit hızlı )
Eksi Yönde Sabit Hızlı Hareket
Hareketli cismin ( - ) yönde eşit zaman aralıklarında eşit yol alması demektir.
Yukarıdaki hareketli eksi seçilen yönde sabit hızla ilerlemektedir.
Hareketin konum-zaman, hız-zaman, ivme-zaman grafikleri
sıralarıyla verilmişlerdir.
DÜZGÜN DEĞİŞKEN DOĞRUSAL HAREKET (
Sabit İvmeli Hareket )
DÜZGÜN HIZLANAN DOĞRUSAL HAREKET
Düzgün hızlanan doğrusal harekette hareketli, hızını düzenli ve sürekli
olarak arttırır. Duran bir arabanın harekete başlarken hızlanması veya
hareket halindeyken gaza basarak hızını arttırması bu harekete örnektir.
Animasyonda, mavi araba 10 m/s lik sabit hızla ilerlerken, kırmızı araba
hızını 0 dan itibaren düzgün olarak artırıp, 12 m/s ye kadar çıkardıktan
sonra sabit hızla ilerliyor. Kırmızı arabanın hızını 0 dan 12 ye 3 saniyede
çıkardığı grafikten okunuyor. Onun için hızlanma ivmesi 4 m/s2 dir.
DÜZGÜN HIZLANAN DOĞRUSAL HAREKET
Artı Yönde Hızlanan Hareket
Yukarıdaki grafikler + yöne hızlanarak hareket eden bir cisme aittir.
Sırasıyla
konum-zaman,
hız-zaman,
ivme-zaman
grafikleri
verilmişlerdir. Cisim + yönde hareket ettiğinden hızın işareti her zaman +
işaretli olur, yani hız-zaman grafiği 1. bölgededir ve konum-zaman grafiği
yukarı doğru çıkan bir paraboldür. İvme -zaman grafiği ise + işaretli
yatay bir çizgidir. Çünkü + yönde hızlanan hareketin ivmesi + işaretlidir ve
ivme sabit olduğundan grafik yataydır.
Artı Yönde Hızlanan Hareket
( + ) Yönde Sabit Hızla ilerleyen Kırmızı araç ve
( + ) Yönde Hızlanan hareketle ilerleyen Mavi araca ait
Yol-Zaman, Hız-Zaman ve İvme- Zaman grafikleri görülüyorlar.
DÜZGÜN HIZLANAN DOĞRUSAL HAREKET
Eksi Yönde Hızlanan Hareket
Yukarıdaki grafikler ( - ) yöne hızlanarak hareket eden bir cisme
aittir. Sırasıyla konum-zaman, hız-zaman, ivme-zaman grafikleri
verilmişlerdir.Cisim - yönde hareket ettiğinden hızın işareti her zaman
- işaretli olur, yani hız-zaman grafiği 4. bölgededir ve konum-zaman
grafiği aşağıya doğru inen bir paraboldür. İvme -zaman grafiği ise
- İşaretli yatay bir çizgidir. Çünkü - yönde hızlanan hareketin ivmesi
- işaretlidir ve ivme sabit olduğundan grafik yataydır.
DÜZGÜN YAVAŞLAYAN DOĞRUSAL HAREKET
Düzgün yavaşlayan doğrusal harekette hareketli hızını düzenli ve sürekli
olarak azaltır. Hareket eden bir arabanın frene basarak hızını azaltması bu
harekete örnektir.
( + ) Artı Yönde Yavaşlayan Hareket
Yukarıdaki grafikler ( + ) yöne yavaşlayarak hareket eden bir cisme
aitlerdir. Sırasıyla konum-zaman, hız-zaman, ivme-zaman grafikleri
verilmişlerdir. Cisim + yönde hareket ettiğinden hızın işareti her zaman
+ işaretli olur, yani hız-zaman grafiği 1. bölgededir ve konum-zaman
grafiği yukarıya doğru çıkan bir paraboldür. İvme -zaman grafiği ise işaretli yatay bir çizgidir. Çünkü + yönde yavaşlayan hareketin ivmesi işaretlidir ve ivme sabit olduğundan grafik yataydır.
DÜZGÜN YAVAŞLAYAN DOĞRUSAL HAREKET
( - ) Eksi Yönde Yavaşlayan Hareket
Yukarıdaki grafikler ( - ) yöne yavaşlayarak hareket eden bir cisme
aittir. Sırasıyla konum-zaman, hız-zaman, ivme-zaman grafikleri
verilmişlerdir. Cisim - yönde hareket ettiğinden hızın işareti her zaman işaretli olur, yani hız-zaman grafiği 4. bölgededir ve konum-zaman
grafiği aşağıya doğru inen bir paraboldür. İvme -zaman grafiği ise +
işaretli yatay bir çizgidir. Çünkü - yönde yavaşlayan hareketin ivmesi +
işaretlidir ve ivme sabit olduğundan grafik yataydır.
( + ) Yönde hızlanıp, Sabit Hızla İlerleyen ve ( + ) Yönde yavaşlayan
araca ait
Yol-Zaman, Hız-Zaman ve İvme- Zaman grafikleri görülüyorlar.
KUVVETİN HAREKETE ETKİSİ
Kuvvet, bir cismi harekete geçirebilmek, hareket halindeki bir cismi
durdurabilmek, hareketin yönünü ya da hızını değiştirebilmek için gerekli
olan itme ya da çekme miktarıdır.
Evrendeki her şey ya hareket halindedir ya da durağan yani hareketsiz
haldedir. Hareket halindeki bir cismi durdurmak ve durağan hale getirmek
ya da hareketsiz durumdaki bir cismi harekete geçirmek için kuvvet denen
bir etkinin uygulanması gerekir. Evrendeki her türlü itme veya çekme
eylemleri kuvvete birer örnektir. Örneğin, Dünya, cisimleri kendine doğru
çekiyorsa cisimlere bir kuvvet uyguluyordur. Mıknatıs demiri çekiyorsa ona
bir kuvvet uyguluyordur.
KUVVETİN CİSİM ÜZERİNDEKİ ETKİLERİ:
1. Kuvvet cisimleri hareket ettirir. (Bir cismi elinizle iterseniz onu hareket
ettirebilirsiniz.)
2. Hareket eden cisimleri durdurur. (Hareket eden bir cisme hareket
yönüne zıt bir kuvvet uygulanınca cisim yavaşlar ve durabilir.)
3. Hareket eden cisimlerin hareket yönünü değiştirir.
4. Cisimlerin şeklini değiştirir.
NEWTON’UN HAREKET KANUNLARI
İnsanlar harekete neden olan etkilerle uzun süre ilgilenmişler, bir cismi
devindirebilmek için kesinlikle bir etkinin, yani kuvvetin gerektiğini ileri
sürmemişlerdi ve olağan haldeki cismin durması gerektiğine inanmamışlardı.
Gerçekten bir düzlem üzerinde bir cisim kaydırılmak istenirse, cismin
kısa bir süre gittikten sonra yavaşlayıp durduğu gözlenir.Bu gözlem dış bir
kuvvet olamadığı sürece kaymanın olmadığı düşüncesini destekler. Galileo
yaptığı deneylerde bu inancın gerçek olmadığını gösterdi.Eğer cisim ve onun
üzerinde durduğu düzlem pürüzsüz hale getirilirse ve cisim yağlanırsa,
cismin hızının daha yavaş azaldığı ve cismin daha ileride durduğu gözlenir.
Buna göre, cismin kayması yavaşlatıcı, yani bütün sürtünmeler, ortadan
kaldırılırsa, cismin değişmez bir hızla yoluna bir doğru boyunca sonsuza
kadar devam sonucu çıkar.Galileo’nun vardığı sonuç bu idi.Ona göre, bu
cismin hızını değiştirmek için bir dış kuvvet gerekir; ama belli bir hızda giden
cismin hızını koruyabilmesi için bir kuvvete gerek yoktur. Mesela bir sandığı
bir düzlemde ittiğimizde, ellimizin verdiği itme sandığa bir hız kazandırır,
fakat düzlem sandığa bir kuvvet uygulayarak onu yavaşlatır ve durdurur.Her
iki kuvvette hızda bir değişim, yani bir ivme oluşturur.İşte Galileo’nun bulduğu
bu gerçeği, Isaac Newton bir evrensel yasa olarak 1686'da yazdığı Principia
Mathematica Philosophia Naturalis adlı kitabında ortaya koydu.
NEWTON’UN HAREKET KANUNLARI
Newton’un Birinci Yasası EYLEMSİZLİK
Herhangi bir cisim üzerine bir kuvvet etki etmiyorsa, ya da etki eden
kuvvetlerin bileşkesi sıfırsa, cisim durumunu değiştirmez; yani duruyorsa
durur, hareket ediyorsa, hareketini bir doğru boyunca devam ettirir.
Cisimlerin üzerine etki eden kuvvetlerin olmaması durumunda
cisimlerin durumlarını koruması maddenin bir özelliği olarak alınır ve buna
eylemsizlik denir. Newton’un birinci yasasına da çoğu kez eylemsizlik
yasası denir.
a) Duran bir cisme bir kuvvet etki etmedikçe cisim yine hareketsiz kalır.
Bir cisme etki eden kuvvetlerin bileşkesi sıfır (R=0) ise, cisim o anki
durumunu korur. Bir cisme uygulanan net kuvvet 0 ise ivme a = 0 olur.
b) Hareketli bir cisme bir kuvvet etki etmezse, cismin hızı ve yönü
değişmez. Cisim hareket ediyorsa düzgün doğrusal yani sabit hızlı olarak
hareketine devam eder.
Newton’un Birinci Yasası EYLEMSİZLİK
Bir cismin üzerine etki eden kuvvetlerin bileşkesi sıfır ise cisim
hareket durumunu korur.
Yani duruyorsa durmaya devam eder, hareket halindeyse düzgün
doğrusal hareket yaparak hareketini sürdürür.
Ama asla yavaşlamaz veya hızlanmaz veya hareket yönünü
değiştirmez.
Duran bir otobüste ayaktaki yolcuların haberleri olmadan otobüs
aniden hareket ederse arkaya doğru itilirler.Hareket halindeki bir otobüsün
aniden fren yapması sonunda ayaktaki ve oturan yolcuların öne fırlaması
yolcuların bulundukları durumları korumak istemelerinden kaynaklanır.
Newton’un birinci yasasında görüldüğü gibi, bir cismin durması veya
değişmez bir hızla gitmesi arasında fark yoktur. Buna göre, bir eylemsiz
çerçevede durduğu gözlenen bir cisim, başka bir çerçeveden bakılınca
değişmez bir hızla gider görülür. Her iki çerçeveye göre de cismin bir hızı
yoktur. Her iki çerçeveye göre de hız değişmez. Buna göre her iki
çerçevedeki gözleyici de cismin üzerine bir kuvvet etkidiği ya da, etki eden
kuvvetlerin bileşkesinin sıfır olduğu bulunur.
Newton’un Birinci Yasası EYLEMSİZLİK
Eğer cisme bir kuvvet etki ediyorsa, ya da etki eden kuvvetlerin bileşkesi
sıfırdan farklıysa, cisim kuvvet yönünde ya da bileşke kuvvet yönünde sabit
bir ivmeyle hareket edecektir. Söz konusu kuvvetle, bu kuvvetin kazandırdığı
ivmenin oranı sabittir ve bu orana Eylemsizlik Kütlesi denir.
Formül olarak, Eylemsizlik Kütlesi = Kuvvet / İvme olacaktır.
Newton’un İkinci Kanunu DİNAMİĞİN TEMEL İLKESİ
Newton'un 1. kanunu cisme etkiyen net kuvvetin sıfır olduğu durumları
açıklıyordu. Net kuvvet sıfır ise cismin ivmesi de sıfırdır.
Newton'un 2. kanunu ise net kuvvetin sıfırdan farklı olduğu durumları
açıklar. Cisme uygulanan net kuvvet cismin ivmesiyle doğru orantılıdır.
Kuvvet ile ivme arasındaki bağlantıyı bulabilmek için, önce aynı bir
cisme değişik şiddet ve doğrultuda kuvvet uygulanıp F ve a ölçülürse,
sonrada farklı cisimlerle aynı ölçmeler yapılırsa şu sonuçlar elde edilir:
1 - Bütün durumlarda ivmenin doğrultusu kuvvetin doğrultusu yönüyle
aynıdır.
Bu sonuç, cisim başlangıçta durgun da olsa, herhangi bir hızla belli
doğrultuda gitse de doğrudur.
2 - Belli bir cisim için kuvvetin şiddetinin, ivmenin oranı değişmez
kalmaktadır.
Bu oran değişik cisimler için farklı,
fakat bir cisim için aynıdır.
Newton’un İkinci Kanunu DİNAMİĞİN TEMEL İLKESİ
Bu değişmeze, cismin bir özelliği gözüyle bakılır ve cismin kütlesi
olarak adlandırılır. Kütle m harfiyle gösterilir.
yada
Kütle sayısal bir büyüklüktür.
F = m . a eşitliğinde görüldüğü gibi kütle, uygulanan kuvvete karşı
cismin kazanacağı ivmeye karşı koyan bir nicelik olarak ortaya çıkmaktadır.
Yani, aynı bir kuvvetle kütlesi küçük olan bir cisim daha büyük bir ivme,
kütlesi büyük olan bir cisim ise daha küçük bir ivme kazanır. Sözgelimi duran
ya da hiç değişmeyen bir hızla giden otomobilin (~ 1500 kg) hızında,
saniyede 5 m/s lik bir hız değişimi sağlayabilmek için 7500 N luk bir kuvvet
gerekirken, aynı hız değişimini bir kamyonda (~2000 kg) sağlayabilmek için
10000 N luk bir kuvvet gerekir. Bu yönüyle kütle, devinime karşı koyan bir
niceliktir; başka bir deyimle, ötelenme devinimindeki değişime karşı koyar.
Bu açıdan kütleye, öteleme eylemsizliği de denir.
Newton’un İkinci Kanunu DİNAMİĞİN TEMEL İLKESİ
Newton’un ikinci yasası olarak bilinen F = m . a eşitliği vektörel bir
eşitliktir. Bir cisme aynı anda çeşitli doğrultularda, çeşitli büyüklüklerde
birçok kuvvet etki ettiklerinden, cisim bunların bileşkesi yönünde bir
ivme kazanır.
Devinim tek boyutta ise bu durumda kuvvetler de tek doğrultuda
olacaklarından, kuvvetlerin büyüklüklerinin cebirsel toplamının kütleye
oranı, ivmenin değerini verir. Devinim iki boyutta ise bu durumda
kuvvetlerin x,y bileşenleri bulunurlar, bunların cebirsel toplamının
kütleye bölümü o yöndeki ivme bileşeninin büyüklüğünü verir.
İvme uygulanan kuvvetle doğru orantılıdır ve kuvvet yönündedir.
Cismin momentumunda zamana göre değişiminin oranı , cisme
etkiyen kuvvetle doğru orantılıdır.
Newton’un Üçüncü Kanunu ETKİ TEPKİ KANUNU
Doğadaki bütün gerçek kuvvetler çevreyle etkileşme sonucu oluşurlar.
Bir cisim diğer bir cisme bir kuvvetle etki ettiğinde, diğer cisim de bu cisme
bir kuvvet uygular. Buna ek olarak bu kuvvetlerin büyüklükleri eşitlerdir,
yönleri zıtlardır. Bu durumda, yalıtılmış tek bir kuvvetten söz edilemez. İki
cisim arasındaki etkileşimde bu kuvvetlerden birine «etki» diğerine
«tepki» kuvveti denir. Başka bir deyimle,kuvvetlerden birisi «etki» olarak
alınırsa, diğeri birinciye karşı «tepki» olarak alınır.
ÖZET OLARAK
1. Herhangi bir etkiye karşı her zaman bir tepki vardır ya da iki cismin
karşılıklı etkisi daima eşit, fakat zıt özelliklidir.
2. İki cisim arasında oluşan etkileşmede F kuvveti, ikincinin birinciye
etkidiği F kuvvetine eşit fakat zıt yönlüdür.
Newton’un Üçüncü Kanunu ETKİ TEPKİ KANUNU
Günlük yaşantımızda bir cisme bir kuvvet uygulanması söz konusu
olduğunda, onun herhangi bir yolla itilmesi ya da çekilmesi aklımıza gelir.
Sözgelimi asılı bir mıknatıs çubuğunu yaklaştırdığımızda aynı cins kutuplar
karşı karşıya geldiklerinde, asılı mıknatısın bizde uzaklaşacak yönde
gittiğini; zıt cins kutupların karşı karşıya gelmeleri durumunda asılı olan
mıknatısın bize doğru geldiğini görürüz. Her iki durum için elimizdeki
mıknatısın, asılı olan mıknatısa bir kuvvet uyguladığını ve bunun sonucu
olarak asılı mıknatısın devinime (harekete) başladığını söyleriz. Bunun
yanında, elimizde tuttuğumuz mıknatısın da, diğer mıknatısa
yaklaştırılırken çekilip itildiğini hissederiz.
Newton’un Üçüncü Kanunu ETKİ TEPKİ KANUNU
Newton’un Üçüncü Kanunu ETKİ TEPKİ KANUNU
Her etki kendisine eşit büyüklükte fakat zıt yönde bir
tepki meydana getirir. Etki ile tepki eşit ve ters yönde
olmalarına rağmen bileşkesi sıfır değildir. Çünkü bu kuvvetlerin
bileşkesi alınamaz. İki kuvvetin bileşkesinin alınabilmesi için
aynı noktaya veya aynı cisme etkimesi gereklidir. Yukarıdaki
örneklerde de görüldüğü gibi etki ve tepki farklı cisimler
üzerinde olduklarından bileşkeleri alınamaz.
SÜRTÜNMELİ YÜZEYLERDE HAREKET
Bir cismi farklı yüzeylerde hareket ettirmenin, cismin
hareketinde değişiklikler yaptığını günlük yaşantımızdan bilmekteyiz.
Pürüzlü, kaygan veya cilalı yüzeylerde aynı cismin hareketi farklı farklı
olmaktadır. Cam üzerinde bir cisim daha kolay hareket ederken tahta
üzerinde hareket etmesi daha zordur.
Bir dağcı bisiklet sürerken veya tırmanırken sürtünme kuvveti uygulanır.
Cismin hareket ettiği yüzeyin pürüzlü olması, cismin harekete
geçmesini zorlaştırırken, düz veya pürüzsüz yüzeylerde aynı cisim daha
kolay harekete geçer. Bu nedenle halı, tahta, taşlı zemin gibi yüzeylerde
cismi harekete geçirmek için gerekli olan kuvvet; cam, asfalt, yağlı
zemin gibi yüzeylerdeki aynı cismi hareket ettirmek için gerekli olan
kuvvetten daha büyüktür. Yani cismin temas ettiği yüzeyin pürüzlüğü
arttıkça, cismin harekete geçmesi için gerekli olan kuvvete artmaktadır.
SÜRTÜNMELİ YÜZEYLERDE HAREKET
Şekilde olduğu gibi iki traktör yolda gitmektedirler. Bu traktörlerden
bir tanesi asfalt yolda giderken diğer taşlı bir yolda gitmektedir. Taşlı
yolda giden traktörle düz yolda giden traktörün aynı hızda gitmeleri
için taşlı yoldaki traktörün daha fazla kuvvet kullanması gerekmektedir.
Bir zemin üzerinde bulunan bir cismi harekete geçirmek için, yüzeyin
cisme uygulanan hareketin zıt yönünde oluşan sürtünme kuvvetinden daha
büyük bir kuvvete gereksinim vardır. Aksi taktirde uygulanan kuvvet cismin
sürtünme kuvvetinden daha küçük veya eşitse cisim harekete geçmez.
Sabit hızla hareket eden bir cisme etkiyen sürtünme kuvveti ile
harekete geçirici kuvvetin bileşkesi sıfırdır. Çünkü cismi harekete geçirici
kuvvet ile sürtünme kuvveti ters yöndedir.
Bu bilgilerden hareketle; cisimler hareket ederken temas ettikleri
yüzeylerin sürtünmesinden kaynaklanan ve yer değiştirmeye zıt yönde
ortaya çıkan kuvvete sürtünme kuvveti denir. Sürtünme kuvveti Fs ile
gösterilir.
SÜRTÜNMELİ YÜZEYLERDE HAREKET
Bir cismin hareket edebilmesi için cisme uygulanacak kuvvetin en
az sürtünme kuvveti kadar olması gerekir.
Bu durumda cismin (üzerine etkiyen kuvvet sıfır olacağından) kazandığı
hız sabit kalacak şekilde hareket eder.
Sürtünme Kuvvetinin Özellikleri
1. Sürtünme kuvveti sürtünen yüzeylerin cinsine bağlıdır. Cisme etkiyen
sürtünme kuvveti yüzeylerin cinsine göre değişir.
2. Sürtünme kuvveti (yatay düzlemde) cismin ağırlığıyla doğru orantılı
değişir.
3. Sürtünme kuvveti sürtünen yüzeylerin büyüklüğüne bağlı değildir.
4. Sürtünme kuvveti daima harekete zıt yöndedir.
5. Sürtünme kuvvetinin hareket ettirici özelliği yoktur. Pasif kuvvettir, var
olan hareketi önler.
SÜRTÜNMELİ YÜZEYLERDE HAREKET
Sürtünme Kuvvetinin Bağlı Olduğu Etkenler
a) Yüzeyin pürüzlü olması
Cismin hareket edeceği yüzeyin pürüzlü olması cismin hareketinde
önemlidir. Pürüzlü yüzeylerde cisimlerin hareket etmeleri için daha
büyük kuvvete ihtiyaç vardır.
Bütün yüzeylerde mutlaka pürüz vardır. Cisimler birbiri üzerinde
hareket ederken, yüzeylerindeki girinti ve çıkıntılar birbirinin içerisine
girerek cismin hareket etmesini güçleştirirler. Cilalı yüzeylerde bu
girinti-çıkıntılar daha az olduğundan sürtünme kuvveti de o oranda
azdır. Bu nedenle pürüzlü yüzeylerin yağlanması ile bu girintiler
azaltılarak daha az sürtünme kuvveti uygulamaları sağlanabilir.
b) Cismin ağırlığı
Bir cismin ağırlığı arttığında cismin ve yüzeyin girinti-çıkıntıları
daha fazla birbiri içine gireceğinden sürtünme de artar. Yani cismin
hareketini engelleyen kuvvetin büyüklüğü de artar. Cismin hareket
etmesini engelleyen bu kuvveti yenmek için, bu kuvvetten daha büyük
bir kuvveti cisme uygulamak gerekir.
SÜRTÜNMELİ YÜZEYLERDE HAREKET
Sürtünme Kuvvetinin Etkileri
Sürtünme kuvveti, cisimlerin yüzeyde tutunmasına yardım eden
bir etkendir. Eğer sürtünme kuvveti var olmasaydı birçok yaşamsal
faaliyet mümkün olmazdı. Yolda yürüyemez, bir yerde oturamaz, yemek
yiyemez, yazı yazamaz, araç kullanamazdık. Örneklerde de görüldüğü
gibi her türlü hayati olayın gerçekleşmesinde sürtünme kuvvetinin
etkisi vardır. Araba örneğini biraz açacak olursak, yolda hareketine
başlayan bir aracın durması sürtünme kuvvetinin etkisi ile oluşmaktadır.
Bu kuvvet olmasaydı frenler tutmayacağı için araba sürekli hareket
ederdi.
Sürtünme kuvvetinin hayatımızı kolaylaştıran çok büyük etkilerinin
yanında günlük yaşantıda işleri zorlaştırdığı da bilinmektedir. Çünkü
sürtünme kuvvetini yenerek, cisimleri harekete geçirmek için daha
büyük kuvvet kullanılması gerekir. Ve büyük yükleri, sürtünme kuvveti
nedeni ile kas gücümüzle hareket ettiremeyiz. Bundan dolayı çeşitli
makineler kullanarak bu yükleri hareket ettiririz.
SÜRTÜNMELİ YÜZEYLERDE HAREKET
Sürtünme Kuvvetinin Etkileri
Buzun sürtünme kuvvetinin toprak veya asfalta göre daha düşük
bir sürtünme kuvveti olduğu bilinmektedir. Kışın buzlu yollarda araçlar
daha fazla kaymakta ve frenlerin etkisi daha az olmaktadır. Bu nedenle
kışın meydana gelen kazalar, diğer zamanlara göre daha fazla
olmaktadır. Bu nedenle kışın buzun erimesi için tuz kullanılması veya
toprak atılması bu sürtünme kuvvetini artırmak içindir.
Çocuklar ve sporcuların daha hızlı hareket edebilmeleri için
sürtünme kuvveti az olmalıdır.
SÜRTÜNMELİ YÜZEYLERDE HAREKET
Sürtünme Kuvvetinin Etkileri
Makineler
çalışırlarken,
içerilerindeki
parçalar
birbirine
sürtünürler. Sürtünen bu parçalar zamanla aşınarak kullanılmaz hale
gelirler. Makinelerin yıpranmalarını engellemek için sürtünme kuvvetini
düşürücü önlemler almak gerekir. Yani sürtünme kuvvetinin çok büyük
yararları olmakla beraber bazı zorlukları da vardır.
Sürtünme kuvvetini FS ile,
Cismin sürtünme katsayısını k ile
Cismin ağırlığını da G = mg ile gösterirsek;
FS = k . mg
bağıntısı ile bulunacaktır.
Download