BÖLME VE BÖLÜNEBILME KURALLARI İÇERİKLER 1,2,3 ile Bölünebilme 4 ile Bölünebilme 5,6 ile Bölünebilme 7 ile Bölünebilme 8,9 ile Bölünebilme 10 11 ile Bölünebilme 13 ile Bölünebilme 17 ile Bölünebilme 19 ile Bölünebilme 25 ile Bölünebilme Herhangi bir sayı ile Bölünebilme Örnekler 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17,19,25 sayılarına kalansız olarak bölünüp bölünemediklerini bölme işlemi yapmadan anlamaya yardımcı olan kurallardır. 1,2,3 ile Bölünebilme 1'e bölünebilme kuralı Her sayı 1’e bölünür. 2'ye bölünebilme kuralı Birler basamağı 0,2,4,6,8 olan sayılar yada son rakamı çift olan sayılar 2 ile kalansız bölünür. 3'e bölünebilme kuralı Rakamları toplamı 3 veya 3’ün katları olan sayılar 3 ile kalansız bölünür. 4 ile Bölünebilme Bir sayının 4 ile tam olarak bölünebilmesi için, sayının son iki basamağının 00 veya 4 ün katları olması gerekir. Bir sayının 4 ile bölümündeki kalan, sayının son iki basamağının 4 e bölümündeki kalana eşittir. Diğer taraftan, 4 ile tam olarak bölünebilen yıllar, artık yıl olarak isimlendirilir. Yani, artık yılların Şubat ayı 29 gün çeker. Dolayısıyla, 4 ile Bölünebilme, artık yılların bulunması kullanılabilir. 5,6 ile Bölünebilme 5'e bölünebilme kuralı Birler basamağı 0 veya 5 olan tüm sayılar yada son rakamı 0 veya 5 olan sayılar 5 ile kalansız bölünür. 6'ya bölünebilme kuralı Hem 2 hem de 3 ile bölünebilen sayılar 6 ile kalansız bölünür. 7'ye bölünebilme kuralı Bir sayının 7 ile tam olarak bölündüğünü tespit etmek için, sayının rakamlarının altına birler basamağından başlayarak (sağdan sola doğru) abcdef 231231 -+ sırasıyla ( 1 3 2 1 3 2 ...) yazılmalı ve şu hesap yapılmalıdır: ( 1.f + 3.e +2.d ) - ( 1.c + 3.b + 2.a ) = 7.k + m ( k, m: tamsayı) Sonuç, 7 veya 7 nin katları ( m = 0 ) olursa, bu sayı 7 ile tam olarak bölünür. Şayet, m sıfırdan farklı bir tamsayı olursa, bu sayının 7 ile bölümünden kalan m olur. İşaretler de sağdan başlayarak sırasıyla her üçlü için +, -, +, -, +, -, +, ... şeklinde olmalıdır. Bu kurala, (132) kuralı adı verilmektedir. 8,9 ile Bölünebilme 8'e bölünebilme kuralı Sayının son üç basamağı 000 yada 8’in katı ise bu sayı 8 ile kalansız bölünür. 9'a bölünebilme kuralı Rakamları toplamı 9 veya 9’un katı olan sayılar 9 ile kalansız bölünür. 10,11 ile Bölünebilme 10'a bölünebilme kuralı Birler basamağı yada son rakamı 0 olan sayılar 10 ile kalansız bölür. 11'e bölünebilme kuralı Bir sayının 11 ile tam olarak bölünebilmesi için, sayının rakamlarının altına birler basamağından başlayarak sırasıyla +, -, +, -, ... işaretleri yazılır.Artılı gruplar kendi arasında ve eksili gruplar kendi arasında toplanır.Çıkan sonuç 11’in katı ise bu sayı 11 ile kalansız bölünür. 13 ile Bölünebilme 13'e bölünebilme kuralı X sayısını X=10.a+b şeklinde yazdığımızda a4.b sayısı 13'ün katı ise bu sayı 13 ile kalansız bölünür. 17 ile Bölünebilme 17'ye bölünebilme kuralı X sayısını X=10.a+b şeklinde yazdığımızda a-5.b sayısı 17'nin katı ise bu sayı 17 ile kalansız bölünür. 19 ile Bölünebilme 19'a bölünebilme kuralı X sayısını X=10.a+b şeklinde yazdığımızda a+2.b sayısı 19'ün katı ise bu sayı 19 ile kalansız bölünür. 25 ile Bölünebilme 25'e bölünebilme kuralı Son iki basamağı 25, 50, 75, veya 00 olan sayılar 25 ile kalansız bölünür. Herhangi Bir Sayı ile Bölünebilme a ve b aralarında asal sayı ve x=a.b olsun. Şayet, bir sayı hem a ya hem de b ye bölünüyorsa, bu sayı x e de tam olarak bölünür. ÖRNEKLER ÖRNEK 1 : Rakamları farklı 5 basamaklı 9452X sayısının 2 ile bölünebilmesi için, X değerlerinin toplamı kaç olmalıdır? Çözüm: 9452X sayısının 2 ile bölünebilmesi için, X in alabileceği değerler 0, 2, 4, 6, 8 olmalıdır. Oysa, bu sayının rakamlarının farklı olması istendiğinden, X rakamı 2 ile 4 olamaz. Dolayısıyla, X in alabileceği değerler 0, 6, 8 dir. Bu değerlerin toplamı 0 + 6 + 8 = 14 olur. Örnek 2: 5 basamaklı 1582A sayısının 3 ile bölünebilmesini sağlayan A değerlerinin toplamı kaçtır? Çözüm: Bir sayının 3 ile bölünebilmesi için, sayının rakamları toplamının 3 ün katları olması gerektiğinden, 1+5+8+2+A=3.k olmalıdır. Buradan, 16 + A = 3 . k olur. Böylece, A 2, 5, 8 değerlerini alması gerekir. Dolayısıyla, bu değerlerin toplamı 2 + 5 + 8 = 15 olarak bulunur. Örnek 3 İki basamaklı mn sayısı 3 ile tam olarak bölünebilmektedir. Dört basamaklı 32mn sayısının 3 ile bölümünden kalan kaçtır? Çözüm: mn sayısı 3 ile tam olarak bölünebildiğine göre, m+n=3.k olması gerekir. O halde, 32mn sayısının 3 bölümünden kalan şöyle bulunur: 3+2+m+n=5+(m+n) =5+3.k =3+2+3.k =2+3.k Dolayısıyla, Kalan = 2 dir. Örnek 4: Dört basamaklı 152X sayısının 4 e bölümünden kalan 2 olduğuna göre, X in alabileceği değerler toplamı kaçtır? Çözüm: 152X sayısının 4 e tam olarak bölünebilmesi için, sayının son iki basamağının yani 2X in, 4 ün katları olması gerekir. O halde, X, 0, 4, 8 ... (1) değerlerini alırsa, 152X sayısı 4 e tam olarak bölünür. Kalanın 2 olması için, (1) nolu değerlere 2 ilave edilmelidir. Bu taktirde, X, 2, 6 değerlerini almalıdır. Dolayısıyla, bu değerlerin toplamı 2+6=8 olur. Örnek 5: 666 + 5373 toplamının 4 e bölümünden kalan kaçtır? Çözüm: 666 nın 4 e bölümünden kalan şöyle bulunur: 66 nın 4 e bölümünden kalana eşit olup, kalan 2 dir. 5373 ün 4 e bölümünden kalan şöyle bulunur: 73 ün 4 e bölümünden kalana eşit olup, kalan 1 dir. Bu kalanlar toplanarak, toplamın kalanı 2+1=3 bulunur. KAZANIM Bu konu 6. sınıfın 1. Dönemi 2. Ünite konusuna uygun olarak dizayn edilmiştir. HAZIRLAYAN AYTÜL ŞERBETÇİOĞLU İlköğretim Matematik Öğretmenliği 2-A (Gündüz) 110403059