Temel Formuller 2 cos(x+y)=cosx cosy ‐ sinx siny cos(x‐y)=cosx cos y + sinx sin y + ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ cos(x+y)+cos(x‐y)=2 cosx cosy 2 sin x+cos x=1 cos(x+y)=cosx cosy ‐ sinx siny (1) sin(x+y)=sinx cosy + siny cosx (2) sin(‐x)=‐ sinx (3) cos(‐x)=cos(x) (4) tan(‐x)=‐tan(x) (4.a) cosx cosy= 1 [cos(x+y) +cos(x‐y)] (7) 2 *************************** (5) den (1) i cikar cos(x‐y)=cosx cos y + sinx sin y cos(x+y)=cosx cosy ‐ sinx siny ‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ cos(x‐y)‐cos(x+y)=2 sinx siny x 0 30 45 60 90 sinx 0 0.5 0.707 0.8 1 cosx 1 0.8 0.707 0.5 0 1) x 0 0 2 sin x x 30 1 2 0 0.5 0 30 4 2 cos x 1 45 60 2 2 sinx siny = 1 [ cos(x‐y)‐ cos(x+y)] (8) 90 3 2 2 ************************************ (2) ve (6) yi topla 4 2 0.707 0.866 1 45 3 2 2 2 60 sin(x+y)=sinx cosy +siny cosx (2) sin(x‐y)=sinx cosy ‐ siny cos x (6) + ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 90 1 2 0.866 0.707 0.5 0 2 sin(x+y) + sin(x‐y) =2 sinx cosy sinx cosy = 1 [ sin(x+y)+ sin(x‐y)] (9) 2 ************************ ************ (1) de x=90 koy 0 y=sin x cos(x+90)=cosx cos90 ‐ sinx sin90 π/2 cos(x+90)=– sinx (10) 2π π x ************************ ************ (1) de x=‐90 koy cos(x‐90)=cosx cos(‐90) ‐ sinx sin(‐90) cos(x‐ 90)= sinx (11) ************************ ************ (2) de x=90 koy y=cos x sin(x+90)=sinx cos90 + sin90 cosx sin(x+ 90)= cosx (12) π π/2 2π x ************************ ************ (2) de x=‐90 koy sin(x‐90)=sinx cos(‐90) + sin(‐90) cosx ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ (1) de y yerine –y yaz ve 3,4 bagintilarini kullan cos(x‐y)=cosx cos(‐y) ‐ sinx sin(‐y) sin(x‐ 90)= ‐cosx (13) ************************ ************ (1) de x=90, y=‐q koy cos(90‐q)=cos90 cos(‐q) – sin90 sin(‐q) cos(x‐y)=cosx cos y + sinx sin y (5) cos(90‐q)= sinq (14) (2) de y yerine –y yaz ve 3,4 bagintilarini kullan sin(x‐y)=sinx cos(‐y) ‐ sinx cos(‐y) ************************ ************ sin(x‐y)=sinx cosy ‐ siny cos x (6) ******************************** (1) ve (5) i topla (2) de x=90, y=‐q koy sin(90‐q)=sin90 cos(‐q) + cos90 sin(‐q) sin(90‐q)= cosq (15) ************************ ************ (1) de y=x koy cos(x+x)=cosx cosx ‐ sinx sinx cos(2x) = cos2x‐sin2x sin2x=1‐cos2x koy cos2x ‐sin2x= cos2x –(1‐ cos2x)= 2cos2x ‐1 2 cos(2x) = 2cos x ‐1 (16) = 1 1 1 sinq ‐ sin(3q) + sin q 2 4 4 sin3q= = ‐ 1 sin(3q) + 3 sin q (34) 4 4 veya veya sin(3q)= ‐4sin3q +3sinq (35) cos2x = 1 [ 1+cos(2x)] (17) ********************** ******* 2 ************************ ************ (1) de y=x koy cos(x+x)=cosx cosx ‐ sinx sinx cos(2x) = cos2x‐sin2x cos2x=1‐sin2x koy cos2x ‐sin2x= 1‐ sin2x – sin2x = 1‐2sin2x cos(2x) =1‐ 2sin2x (18) veya sin2x = 1 [ 1‐cos(2x)] (19) 2 ********************** ******* (2) de y=x koy sin(x+x)=sinx cosx + sinx cosx=2 sinx cosx sin2x =2 sinx cosx (20) ********************** ******* (16) ve(17) de da q=2x koy cos q = 2cos2 q ‐1 (21) 2 2q cos q = 1‐2sin 2 (22) ********************** ******* (20) de q=2x koy sinq =2 sin q cos q (23) 2 2 ********************** ******* 90 180 270 ‐90 ‐180 sinx 1 0 ‐1 ‐1 0 cosx 0 ‐1 0 0 ‐1 ********************** ******* sin3q=sinq sin2q (19) bagintisinda verilen sin2q yerine koy 1 2 1 2 cos3q=cosq cos2q (17) bagintisinda verilen cos2q yerine degerini koy 1 2 1 2 cos3q= cosq [ 1+cos(2q)] = [ cosq+ cosq cos(2q)] (7 bagintisinda x=q, y=2q koy 1 2 1 = [ cos(3q)+ cosq] 2 1 1 3 cos q= [ cosq+ [ cos(3q)+ cosq]] 2 2 1 3 = cos3q + cosq 4 4 cos3q= = 1 cos3q + 3 cosq (36) 4 4 cosq cos2q= [cos(q+2q) +cos(q‐2q)] cos3q=4 cos3q ‐3 cosq (37) ************************** ***** tan(x+y)= sin( x + y ) = sin x cos y + sin y cos x cos( x + y) cos x cos y − sin sin y payi ve paydayi cosx cosy ifadesine bolelim sin x cos y + sin y cos x sin x cos y sin y cos x + cos x cos y cos x cos y cos x cos y = = cos x cos y − sin sin y cos x cos y sin sin y − cos x cos y cos x cos y cos x cos y sin x sin y + tan x + tan y cos x cos y = = sin x sin y 1 − tan x tan y 1− cos x cos y tan( x + y ) = tan x + tan y 1 − tan x tan y (41) sin3q= sinq [ 1‐cos(2q)] = [ sinq‐ sinq cos(2q)] *************** ***************** (9) bagintisinda x=q, y=2q koy tan(‐x)=‐tan(x) oldugu dikkate alinirsa 1 2 sinq cos(2q)= [ sin(q+2q)+ sin(q‐2q)] 1 2 = [ sin(3q)‐ sin(q) ] 1 2 1 2 sin3q= [ sinq‐ [ sin(3q)‐ sin q] ] tan( x − y ) = tan x − tan y 1 + tan x tan y (42) *************** ***************** (41) de y=x koy tan(2 x) = 2 tan x 1 − tan 2 x (43) *************** ***************** x x sin x = 2 sin cos = 2 2 2 (43) de q=2x koy q 2 tan 2 tan(q) = q 1 − tan 2 2 sin x = sin x sin x 1 − cos x = = 2 cos x cos x 1 − sin x 2 (51) **************************** ***** sin x tan x = ⇒ tan 2 x = 1 − sin 2 x tan2x(1‐ sin2x) = sin2x tan2x ‐ tan2x sin2x = sin2x tan2x ‐ tan2x sin2x ‐ sin2x=0 ‐ tan2x sin2x ‐ sin2x=‐ tan2x sin 2 x 1 − sin 2 x tan 2 x tan x ⇒ sin x = sin x = 2 1 + tan x 1 + tan 2 x 2 ⇒ tan 2 x = tan2x cos2x= 1‐ cos2x cos2x(1 +tan2x)=1 cos 2 x = 1 − cos 2 x cos 2 x 2 cos x = 1 1 + tan x 2 1 = x ⎞ ⎛ ⎜ 2 tan ⎟ 2 ⎜ ⎟ 1+ ⎜ 1 − tan 2 x ⎟ ⎜ ⎟ 2⎠ ⎝ sinq =2 sin cos (52)ve (53) den sin x = 2 tan x 2 1 x cos = 2 x x 1 + tan 2 1 + tan 2 2 2 Ucu birlestirilirse 2 basitlestirmek icin q=tan(x/2) tanimi yapalim. 1 ⎛ 2q ⎞ ⎟ 1+ ⎜⎜ 2⎟ ⎝ 1− q ⎠ = (23) den q 2 x 2 ⎛ ⎞ ⎜ ⎟ 2x 1 ⎟ − 1 cos x = 2cos ‐1 = 2⎜ ⎜ 2 x⎟ ⎜ 1 + tan 2 ⎟ 2⎠ ⎝ x 1 − tan 2 cos x = x 1 + tan 2 (55) 2 1 1 ⇒ cos x = 2 1 + tan x 1 + tan 2 x q 2 1 + tan 2 ************ *********** (21) ve (53) den = (53) *************** ***************** x 2 x (54) 2 (52) *************** ***************** 1 − cos 2 x cos x 1 + tan 2 1 ************************************* * (54) ve (55) icin baska bir yol. (53) ve (44) birlestirilirse ‐ sin2x (tan2x+1)= ‐ tan2x tan x = x 2 x 2 1 + tan 2 (44) **************************** ***** tan x = tan tan 2 1 = 1 1 + 2q 2 + q 4 1 − 2q 2 + q 4 1+ = 2 4q 1− 2q2 + q4 = 1 1− 2q + q 4q2 + 2 4 2 4 1− 2q + q 1− 2q + q 2 4 x 1 − tan 2 1− q2 2 = = 2 2 2 x + q 1 2 (1 + q ) 1 + tan 2 2 2 (1 − q ) 1 x 2 cos x = 2 x 1 + tan 2 1 − tan 2 (56) ************************* ********* ** (52) ve (44) birlestirilirse 2 tan sin x = tan x 1 + tan 2 x = x 2 1 − tan 2 x 2 x ⎞ ⎛ ⎜ 2 tan ⎟ 2 ⎟ 1+ ⎜ ⎜ 1 − tan 2 x ⎟ ⎜ ⎟ 2⎠ ⎝ 2 tan x/2= t, q=tan(x/2) tanimi yapalim. = 2q 1− q2 ⎛ 2q ⎞ ⎟ 1 + ⎜⎜ 2 ⎟ ⎝1− q ⎠ 2 = 2q 1− q2 4q 2 1+ 1 − 2q 2 + q 4 = 2q 1− q2 1 − 2q 2 + q 4 4q 2 + 2 4 1 − 2q + q 1 − 2 q 2 + q 4 = = ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐ 2q 1− q2 Ters Trigonometrik Fonksiyonlar 1 − 2q 2 + q 4 4q 2 + 1 − 2q 2 + q 4 1 − 2q 2 + q 4 2q 1− q2 1 + 2q 2 + q 4 1 − 2q 2 + q 4 = 2q 1− q2 (1 + q 2 ) 2 (1 − q 2 ) 2 2 tan x 2 2q 1 − q 2q = = 1 − q 2 1 + q 2 1 + q 2 1 + tan 2 x 2 x 2 tan 2 sin x = 2 x (57) 1 + tan 2 ********************** *************** ***** tan x=t/1 denirse. = 2 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐