Hedging With Financial Derivatives

advertisement
Ders Notu
FĐNANSAL TÜREVLERLE HEDGING:
FORWARD VE FUTURES ĐŞLEMLERĐ
Dr. Veli AKEL©
1.GĐRĐŞ
Son yıllarda, uluslararası piyasalarda mal ve ürün fiyatlarında olduğu kadar döviz
kuru ve faiz oranlarındaki değişmelerin neden olduğu riske karşı korunma ihtiyacı
doğmuştur. Sabit kur sisteminin çökmesinden sonra 1975’li yıllarda döviz kurundaki
dalgalanmaların yanı sıra faiz oranlarındaki artış, devlet politikalarında faiz oranlarının
serbestçe belirlenebilmesine izin veren bir değişime neden olmuştur. Finansal işlemlerin
artan hacimleri ve bu işlemlerde azalan maliyetler, finansal kurumların kredi ve diğer
faaliyetlerinde kullandıkları yöntemleri değiştirmeleri için finansal kurumlar üzerinde
rekabete dayanan boşluklar yaratmıştır. Dalgalı kur sistemi beraberinde döviz kuru
dalgalanmalarının yarattığı döviz kuru riskini getirmiştir. Bunun sonucu olarak risk
yönetim teknikleri ve stratejileri geliştirilmiştir. Finans dünyası, bu aşamadan sonra her
gün yeni bir finansal araç ile tanışmış, işletmelerin ihtiyaçlarına uygun olarak geliştirilen
yeni ürünler piyasaya sunulmuştur.
1973 Yılında Bretton Woods sisteminin çökmesiyle sabit kur sisteminden dalgalı
kur sistemine geçilmiş ve işletmeler finansal riskle karşı karşıya kalmışlardır. Bu finansal
riskler; döviz kurları, faiz, borsa ve enflasyondaki dalgalanmalardır. Risklerden
kurtulmak veya en aza indirmek, başta finansal kurumlar olmak üzere işletmelerin
başlıca uğraşı olmuştur. Bu amaçla bir takım finansal ürünler geliştirilmiştir. Geliştirilen
başlıca finansal ürünler; forward, futures, swap, option, cap, floor ve collar
sözleşmeleridir.
Uluslar arası piyasalar finansal kurumlar için 1970’li yıllarda başlayan 1980 ve
1990’lı yıllarda da artarak devam eden risk olgusu çok önemli boyutlara ulaşmıştır. Faiz
oranlarında dalgalanmalar artmış, tahvil ve hisse senedi piyasalarında ise büyük
dalgalanmalar yaşanmaya başlanmıştır. Bunların bir sonucu olarak, finansal kurumların
yöneticileri, kurumlarının karşı karşıya kaldığı riskin azaltılması konusuna büyük önem
vermeye
başlamışlardır.
Riskin
azaltılması
için
piyasadan
gelen
yüksek
talep
doğrultusunda finansal kurumların risklerini daha iyi yönetebilmelerine imkan verecek
yeni finansal araçlar ortaya çıkmıştır. Bu finansal araçlar “finansal türevler” olarak
adlandırılmıştır.
Bu çalışmada, finansal kurum yöneticilerinin riski azaltma kullandıkları finansal
türevlerin en önemlilerinden olan forward ve futures işlemleri üzerinde durulacaktır.
2
2. FORWARD PĐYASALAR
Forward piyasalarda, belirli bir varlığın (emtia, döviz, menkul kıymet, altın gibi)
önceden belirlenmiş bir fiyat ve miktar üzerinden gelecekteki bir tarihte alımı veya
satımını öngören sözleşmeler işlem görmektedir. Forward sözleşmelerde, alım-satıma
konu olan varlığın fiyatı, miktarı, özellikleri, teslim yeri, ödeme tarihi ve diğer özel
şartlar taraflar arasında kararlaştırılır. Bu nedenle, her forward sözleşmesi tamamen
tarafların iradeleri doğrultusunda oluşan özel bir sözleşmedir. Dolayısıyla forward
sözleşmelerinde önceden belirlenmiş bir standart söz konusu değildir. Burada, forward
işlemlerinin borç araçlarıyla ilgili olarak faiz oranına dayalı forward sözleşmelerini
inceleyeceğiz.
2.1. Faiz Forward Sözleşmeleri
Faiz forward sözleşmeleri, tarafların belirli bir süre için gelecekteki belirli bir
tarihte ve belirli bir anaparaya uygulanacak faiz oranı konusunda anlaştıkları
sözleşmelerdir. Forward faiz sözleşmelerinde anapara farazi olup, taraflar arasında el
değiştirmemekte,
sadece
faiz
hesaplanmasında
kullanılmaktadır.
Forward
faiz
sözleşmeleri de diğer forward sözleşmeler gibi taraflar için gelecekteki faiz
oranlarındaki
dalgalanmalardan
kaynaklanabilecek
riskleri
bertaraf
etmek
için
yapılmaktadır.
Sözleşmenin vade tarihindeki piyasa faiz oranı ile kararlaştırılmış faiz oranı
arasındaki fark (telafi ödemesi) karşı taraftan tahsil edilerek, sözleşmede belirlenen faiz
oranından mevduat faiz geliri elde etme amacına ulaşılmaktadır. Forward faiz
sözleşmesinin alıcısı, genelde belirli bir süre sonra kredi almayı planlayan, ancak, kredi
faiz oranlarında yükselme endişesi taşıyan yatırımcılar iken; sözleşmenin satıcıları ise
belirli bir süre sonra faiz geliri elde etmeyi planlayan ancak faiz oranlarında düşme
endişesi taşıyan yatırımcılardır. Piyasa faiz oranının sözleşme faiz oranından büyük
olması durumunda sözleşme satan, küçük olması durumunda ise sözleşme alan, karşı
tarafa telafi ödemesi yapacaktır.
Örneğin, First National Bankası, Rock Solid Sigorta Şirketi ile 5 milyon $ nominal
değerli, %8 kupon faizli, 2015 vadeli Hazine Bonosu üzerinden bir faiz forward
sözleşmesi yapmışlardır. Rock Solid Şirketi menkul kıymetleri gelecekte belirli bir
tarihte satın alacağı için, forward işleminde uzun pozisyon aldığını söyleyebiliriz. First
National Bankası da menkul kıymetleri satacak olan taraf olduğu için aynı işlemde kısa
pozisyon almıştır.
3
2.1.1. Faiz Forward Sözleşmeleri Đle Hedging
First National Bankası, Rock Solid Sigorta Şirketi ile neden böyle bir sözleşme
yapmak istemektedir?
Bunun en önemli
nedeni,
hazine
bonolarının vadesinin
dolmasından önce sigorta şirketi tarafından satılması durumunda bankanın kendini faiz
oranı riskine karşı korumak istemesidir. Bunu açacak olursak, elinde 2015 vadeli %8 faizli
5.000.000 $’lık hazine bonosu bulunan banka, eğer gelecekte faiz oranları yükselirse bu
bonolarının fiyatının düşeceğinden veya eğer satılırsa ortaya çıkan sermaye kaybının
yönetilmesinden endişe duymaktadır. Banka, bir forward sözleşmesine girdiğinde,
gelecekteki fiyatı sabitlemiş olmakta ve eğer faiz oranlarında bir değişiklik olursa ortaya
çıkacak fiyat riskini de ortadan kaldırmış olmaktadır. Bundan dolayı, faiz forward
sözleşmeleri, finansal kurumların yöneticilerine faiz oranı riskini azaltmalarına imkan
verir.
Sigorta Şirketi neden banka ile forward sözleşmesi yapmak istemektedir? Sigorta
şirketi ise, 2015 vadeli yıllık %8 faizli 5.000.000 $’lık Hazine Bonosu üzerinden yıllık belli
bir faiz geliri elde edecektir. Fakat şirket, faiz oranın gelecek 1 yıl içerisinde
düşeceğinden endişe duymaktadır. Şirket, forward sözleşmesini kullanarak, yıllık faiz
oranını %8’e sabitlemiş olmaktadır.
Başka bir örnek de verebiliriz: A işletmesi, 01.03.2002 tarihinde 3 ay sonra
(01.06.2002) kullanacağı 1 milyar dolarlık 3 ay vadeli kredi için %10 faiz oranı üzerinden
bir forward faiz sözleşmesi imzalamıştır. 01.06.2001 tarihinde piyasa kredi faiz oranı
%12 olmuştur. Dolayısıyla işletmenin %2’lik bir kazancı olmuştur. Đşletme forward
sözleşme kazancını bankadan tahsil etmiştir.
Faiz oranı forward sözleşmelerinde taraflar, belli tutardaki ana paraya, ileri bir
tarihte, belirli bir süre için uygulanacak faiz oranı üzerinde anlaşırlar. Bu orana forward
faizi denilir.
2.2. Forward Đşleminin Avantajları ve Dezavantajları
Teknik olarak, forward faiz işlemi, borç enstrümanının gelecekteki belirli bir
tarihte satışını içerir ve şu boyutları vardır: (1) gelecekte teslim edilecek gerçek borcun
tanımlanması, (2) borcun miktarı, (3) teslim anındaki borç üzerindeki fiyat (faiz oranı)
ve (4) teslimatın gerçekleşeceği tarih. Forward işlemi yapan bir çok uluslar arası
kuruluş, gelecekteki fiyatı sabitleyerek faiz değişimlerinden kaynaklanacak fiyat değişim
riskini ortadan kaldırmış olacaktır. Sonuç itibariyle vadeli faiz işlemleri şirket
yöneticilerine faiz riski karşısında mücadele fırsatı vermiş olmaktadır.
4
Ancak, forward sözleşmeleri yaparken bu faydalarını azaltan veya kısıtlandıran
iki problemle karşılaşılmaktadır. Bunlardan ilki, First National Bankası gibi finansal bir
kurumun her zaman forward işlemi yapabileceği bir karşı taraf bulmasının çok zor
olabilmesidir. Banka ve sigorta şirketleri gibi grupları eşleştirecek çok sayıda aracı
kurum bulunmasına rağmen, 2015 vadeli %8 faizli bir Hazine bonosu üzerinden forward
sözleşmesi yapacak karşı tarafın bulunması her zaman zordur. Dahası, bankanın karşı
tarafı bulsa bile, Hazine Bonolarını satmayı düşündüğü fiyatın altında bir fiyattan satmak
zorunda kalacaktır. Faiz oranına dayalı forward sözleşmeleri için en ciddi problem,
finansal bir işlem gerçekleştirmenin zorluğu ve avantajlı olmayan bir fiyattan satmak
zorunda olunmasıdır. Yani, faiz oranına dayalı sözleşmelerin yapıldığı piyasalarda
likidite azlığı söz konusudur. (Likidite terimi bir piyasa için kullanılıyorsa, belli bir
menkul kıymet veya varlık için geçerli olan anlamından daha geniş bir anlam ifade
eder).
Đkinci problem ise, forward sözleşmelerin ödenmeme riskinin olmasıdır.
Ödenmeme riski ile tarafların, sözleşmede belirtilen şartları yerine getirebilecek
finansal durumlarının iyi olup olmadığı ve sözleşme kurallarına karşı gösterdiği bağımlılık
ve dürüstlük anlaşılmalıdır. Maliyetli bir süreç olan ve bütün ters seçim ve ahlaki
rizikoları içeren bu durumdan dolayı, faiz forward sözleşmelerinin kullanılmasının
önündeki başlıca engel, ödenmeme riskidir. Ödenmeme riski, likidite azlığı ile birleşirse,
finansal kurumlar faiz forward sözleşmelerini sınırlı şekilde kullanacaklardır.
3. FĐNANSAL FUTURES PĐYASALARI
Faiz oranına dayalı forward piyasalarda görülen ödenmeme riski ve likidite
problemleri veri olmak üzere, faiz oranından korunmak için başka bir çözüme ihtiyaç
duyulmuştur. Bu çözüm de 1975 yılında işlemlerine başlayan Chicago Board Of Trade
tarafından finansal futures sözleşmelerin gelişimiyle ortaya çıkmıştır.
Futures sözleşmelerinin ilk ortaya çıkışı 19. yüzyılın ikinci yarısına kadar
uzanmaktadır. Amerika'da buğday çiftçileri, Ağustos aylarında buğdayın piyasaya yığılıp
fiyatlarda aşırı dalgalanmalar meydana getirmesini önlemek amacıyla vadeli sözleşmeler
yapmaya başlamışlardır. O dönemde yapılan sözleşmeler buğday, mısır, soya fasulyesi
gibi zirai ürünlerle sınırlı kalmıştır. Daha sonra altın, petrol gibi doğal kaynaklar üzerine
de futures kontratları yazılmıştır. 1970 yılına kadar herhangi bir finansal futures
sözleşmesine rastlamak mümkün değilken 1970’den sonraki 15 yıl içinde bu finansal
vadeli işlemlerin işlem hacmi, dünya çapında yılda 30 trilyon doların üstüne çıkmıştır.
Futures sözleşmeler, standart miktar ve kalitede bir varlığı, önceden belirlenmiş
bir fiyattan gelecekte belirli bir tarihte teslim etme ya da teslim almaya ilişkin olarak
5
düzenlenen yasal bir sözleşmedir. Futures sözleşmelerin dayandığı ya da yazıldığı varlık,
fiziksel bir mal olabileceği gibi finansal bir ürün ya da gösterge de olabilir. Dolayısıyla
bunlardan birincisi “mal-emtia futures” diğeri de “finansal futures sözleşmelerdir”. Bir
tür özel vadeli işlem olarak tanımlanabilecek olan futures sözleşmeler, yukarıda geniş
bir şekilde ele alınan forward işlemlerinden ayrılır.
Futures Piyasalar
Emtia (commodity) Futures Söz.
•Tarımsal futures sözleşmeleri
•Enerji futures sözleşmeleri
•Değerli maden futures sözleşmeleri
•Sanayi metalleri futures sözleşmeleri
Finansal Futures Sözleşmeleri.
*Döviz futures söz.
*Faiz futures söz.
*Borsa endeks futures söz.
3.1. Emtia Futures Sözleşmeleri
Bazı tarım ürünleri, maden çeşitleri, orman ürünleri, canlı hayvan, et veya et
mamulleri gibi fiziki ürünler emtia futures piyasalarını oluşturur. ABD’de yüzyılın
üzerinde bir süreden beri bu ürünlerin önemli miktarlarda ticareti yapılmaktadır.
ABD’de futures sözleşmelere konu olan mallar başlıca beş bölüme ayrılmıştır:
1) Hububat, ayçiçeği, 2) canlı hayvan, et, 3) diğer gıda maddeleri, 4) maden, metal ve
ham petrol ve 5) orman ürünleri.
Bu ayırım alım satım yöntemi ve sürecini etkilemez. Ancak benzer malların aynı
grupta değerlendirilmesini sağlar.
Her emtianın kendisine özgü miktarı ve kalitesi bulunmakla birlikte, her emtia
aynı yöntem ile futures sözleşmesine konu olur. Konu ile ilgili yayın organlarında futures
sözleşmelere konu olan emtiaların fiyatlarının yanı sıra yukarıda sözü edilen standart
bilgiler de bulunmalıdır.
Örneğin, bir tekstil firmasını ele alalım. Tekstil firması girdi olarak kullandığı
pamuğun fiyatının yükselmesi olasılığına karşı kendini korumak istemektedir. Bu amaçla,
Ağustos ayında Aralık vadeli 100 pamuk kontratı satın almıştır. Pamuğun 1 poundunun
(453 gr. / 373 gr.) 58 Cent olduğu varsayımı ile 100 pamuk futures kontratı 5 milyon
pound ağırlığındaki pamuğu temsil etmektedir. Bu kontratın toplam maliyeti (5 milyon
pound x 58 Cent) 2.9 milyon USD tutuyor. Hava koşulları kötü gider ve pamuğun fiyatı
yükselirse, örneğin Aralık kontratında 1 pound pamuğun fiyatı 68 Cent'e yükselmiş osun,
tekstil firması için bir risk söz konusu olmaz. Çünkü, pamuğun piyasa fiyatının 10 Cent
6
altında satın almış olur ve bu durumda (5 milyon pound x 10 Cent) 500 bin USD'ı tasarruf
sağlar. Pamuk fiyatının düşüşü durumunda tersi söz konusu olur.
3.2. Finansal Futures Sözleşmeleri
Futures piyasalar ABD’de geliştirilmiş finansal araçlar olduğu için kullanılan
terminolojinin bir kısmı Türkçe’ye aynen geçmiştir. Bir futures sözleşmesinde en sık
kullanılan terimlerin neler olduğu aşağıda ayrıntılı bir şekilde açıklanmıştır.
♦ Spot Fiyat: Malın yada menkul kıymetin hemen satın alınması halinde
ödenecek fiyatıdır. Şu anda gözlenebilir fiyattır.
♦ Futures Fiyat: Đki tarafın şu anda gelecekte işlem yapmak üzere anlaştıkları
fiyattır. Spot fiyattan farklı olarak, bu arz ve talep, gelecek vadedeki spot
piyasalara olan arz ve taleptir.
♦ Futures Spot Fiyat: Malın veya menkul kıymetin beklenen fiyatıdır.
♦ Kısa Pozisyon (Short Position): Futures anlaşmasında kısa pozisyon almış bir
yatırımcı gelecekte belirli bir tarihte, belirlenen bir fiyattan, belirlenen
miktarda malı, parayı veya menkul kıymeti karşı tarafında yer alan yani uzun
pozisyon almış kişiye teslim zorunda olan kişidir.
♦ Uzun Pozisyon (Long Position): Satın almak zorunda olan kişidir.
♦ Pozisyon Limiti: Bir tarafın, bir defada üstlenebileceği maksimum anlaşma
adedini ifade eder.
♦ Fiyat Hareketleri Limiti: Her gün bir futures anlaşmasının fiyatının
değişebileceği aralığı, alt ve üst fiyat limitlerini ifade eder.
♦ Basis: Bir malın veya menkul kıymetin cari fiyatı ile futures fiyatı arasındaki
farktır.
♦ Günlük Hesaplaşma (Daily Settlement): Bir futures sözleşmesinde kısa veya
uzun pozisyon almış bir kişinin bu sözleşmeyi alış ve satış fiyatları ile piyasa
kapanış fiyatları gün sonunda karşılaştırılarak, günlük kar ve zararlar
hesaplanır. Bu işleme günlük hesaplaşma denir.
♦ Başlangıç Teminatı: Kısa veya uzun pozisyon açılırken üyelerin takas kurumu
tarafından belirlenmiş orandan az olmamak kaydıyla müşteriden talep etmesi
gereken ve müşterinin de üyenin hesabına yatırması zorunlu olan tutardır.
Başlangıç teminatlarının temini için gerekli olan süre takas kurumu tarafından
belirlenir.
7
♦ Sürdürme
Teminatı:
Piyasadaki
günlük
fiyat
hareketleri
karşısında
güncelleştirilen teminat tutarlarının korunması gereken alt düzeydir. Takas
kurumu, her gün piyasa fiyatına göre teminat hesaplarını güncelleştirir.
Olumsuz fiyat değişmeleri karşısında değer kaybı söz konusu olduğunda,
başlangıç teminatının sürdürme teminatı olarak takas kurumu tarafından
belirlenen düzeyin altına düşmesi durumunda tamamlama çağrısı yapılarak ek
teminat yatırılması talep edilir.
♦ Pozisyon Kapatma (Closing Out): Futures sözleşmesini vadeye kadar elinde
tutmak istemeyen bir yatırımcı, aynı sözleşmede ters pozisyon alarak
pozisyonunu kapatabilir. Örneğin daha önce uzun pozisyon almış bir
yatırımcı, pozisyonunu kapatmak için aynı sözleşmede kısa pozisyon
almalıdır.
Futures Sözleşmelerinin Kotasyonu ve Đlgili Terimler: Futures sözleşmelerinin
kotasyon başlıkları şöyledir:
günün ilk işlem fiyatı
en yüksek fiyat
en düşük fiyat
futures söz. elde edilen kazanç ve kayıplara göre belirlenen fiyat
Open High Low
Settle
Chg High Low
Open Interest
açık pozisyon sayısı
şimdiye kadar oluşmuş en düşük fiyat
şimdiye kadar oluşan en yüksek fiyat
bir önceki güne göre değişiklik
3.2.1. Faiz Oranı Futures Sözleşmeleri
Faiz oranı futures sözleşmeleri yeni bir finansal yatırım aracıdır. ABD’de emtia
üzerine yapılan futures sözleşmeleri 1860’lardan bu yana uygulanmakla birlikte ilk faiz
oranı futures sözleşmesi 1975 yılında yapılmıştır. Özellikle devlet tahvili, hazine bonosu,
30 günlük faiz oranları ve 90 günlük Eurodollar mevduatlar üzerine yapılmaktadır. Bunlar
kısa, orta ve uzun dönemli olmaktadır.
Faiz oranı futures sözleşmeleri sabit getirili menkul kıymetlere dayalı vadeli
anlaşmalardır. Sabit getirili menkul kıymetler vade boyunca sabit tutarda faizin yanı sıra
vade sonunda ana para ödemesi sağlayan finansal enstrümanlardır. Bu tür araçlar, kısa
vadeli ve uzun vadeli sermaye piyasası araçları olarak ikiye ayrılır. Para pazarı
8
araçlarının vadeleri bir yıldan daha kısadır. Hazine bonoları kısa vadeli sabit getirili,
devlet tahvilleri ise uzun vadeli sabit getirili menkul değerlere örnek olarak verilebilir.
Faiz taşıyan bu menkul değerlerin alımı ve satımı temel olarak iki tür risk içerir.
Bunlardan biri kredi riski, diğeri de faiz riskidir. Kredi riski borçlunun iflas ederek
yükümlülüklerini yerine getirememesi, yani faiz ve ana para ödemelerini zamanında
yapamamasıdır. Faiz riski ise, bir menkul kıymetin fiyatının ya da pazar değerinin
değişim riskidir.
Finansal futures sözleşmeleri daha iyi anlayabilmek için CBOT’da alınıp satılan ve
yaygın olarak kullanılan bir Devlet Tahvili futures sözleşmesini ele alalım. Sözleşmenin
değeri, tahvilin nominal değerine eşittir (100.000$). Fiyatlar, fiyat adımları şeklinde
kote edilmiştir. Her bir fiyat adımı 1.000$’a eşit ve en küçük fiyat değişimi ise
31.25$’dır. Bu sözleşme, satılacak tahvillerin vadesine en azından 15 yıl kaldığını
göstermektedir. Eğer futures işleminde devlet tahvili kupon faiz oranından farklı bir
orandan işlem görürse ne olacaktır?
Bu olayı şu şekilde açıklayalım. 1 Şubat tarihinde 100.000 $ değerindeki Temmuz
vadeli bir futures sözleşmesi ile 115.000 $’a satılmış olsun. Yani, Temmuz ayı geldiğinde
bu sözleşmeyi satan taraf 115.000 $ karşılığında nominal değeri 100.000$ olan tahvili
alıcıya teslim edecek, alıcı da Temmuz sonu itibariyle bu sözleşmede belirtilen tahvili
115.000 $ ödeyerek satın alacaktır. Eğer vade tarihinde bu uzun vadeli tahvillerin faiz
oranları yükselir ve tahvillerin fiyatı 110.000 $ kadar düşerse, alıcı bu futures işleminden
5.000 $ kaybetmiş olacaktır. Çünkü nominal değeri 100.000 $ olan tahvil karşılığında
115.000 $ ödeme yapmıştır ve bu tahvilin Temmuz sonu itibariyle piyasa değeri 110.000
$ olmuştur. Yani, yatırımcı 115.000 –110.000 $ = 5.000 $ zarar etmiş olmaktadır. Tam
tersine, satıcı taraf ise 5.000 $ kazanmıştır. Çünkü, aynı tahvile piyasadan 110.000 $
ödeyerek sahip olabilecektir veya piyasadan 110.000 $’a satın alacak ve 115.000$’a alıcı
tarafa satacaktır.
Futures sözleşmesinin vadesindeki fiyatı, futures sözleşmesinin yazıldığı
varlığın fiyatına eşit olursa ne olur?
Temmuz futures
sözleşmesinin vade tarihi olan 31 Temmuz sonu itibariyle,
tahvilin değeri de 110.000 $ olursa ne olur? Futures sözleşmesinin 110.000$’dan aşağı
örneğin 109.000 $’dan satıldığını varsayalım. Yatırımcı hemen bu sözleşmeyi 109.000
$’dan satın alacak ve hemen 110.000 $’a satacak ve bu yolla 1.000 $ kazanacaktır. Bu
gelirin herhangi bir riski söz konusu olmadığı için bu, herkesin elde etmek istediği bir
kazançtır. Bu durumda herkes bu sözleşmelerden satın almak isteyecek ve bunun
sonucunda fiyat yükselecektir. Fiyat sadece 110.000 $ olursa, futures işlem üzerinde
herhangi bir alış baskısı olmayacaktır. Futures sözleşmesinin fiyatı 110.000 $’ın üzerinde
9
örneğin 111.000$ olursa, herkes sözleşmeyi satmak isteyecektir. Şimdi bütün
yatırımcılar futures sözleşmenin satışından 110.000 $ elde edecek fakat 111.000 $
ödeyerek piyasadan tahvil satın alacaktır. Dolayısıyla karı 1.000 $ azalacaktır. Bu
sözleşmeden alanlar da 1000 $ kazanacaktır. Bu kâr herhangi bir risk içermediği için
yatırımcılar, sözleşmenin fiyatı herhangi bir karın söz konusu olmadığı fiyat olan 110.000
$’a düşmesi için futures sözleşmelerini satacaklardır. Futures piyasalarda ortaya çıkan
bu risksiz kâr imkanının ortadan kaldırılmasına Arbitraj denilmektedir. (Arbitraj, kısaca
iki piyasada pozisyon alınmasını; piyasanın birinde düşük fiyatla satın alınan malın veya
finansal bir varlığın başka bir piyasada daha yüksek bir fiyata satılmasını ifade eder.
Arbitraj işleminin en önemli özelliği hiç risk içermemesidir.)
Yukarıda da özetlendiği üzere, bir futures işleminde vade tarihinde gerçekleşen
fiyat, bir yatırımcının doğrudan karını veya zararını oluşturmaktadır.
3.2.2. Finansal Futures Piyasaların Organizasyonu
Finansal futures sözleşmelerin ticareti genellikle ABD’de yapılmaktadır ve CBOT,
CME, NYFE, MACE ve KCBT gibi borsalarda işlem görmektedir. Bu borsalar birbirleriyle
rekabet içerisindedirler ve kendi borsalarındaki futures işlemlerin hacminin artması için
yeni düzenlemelere girişmektedirler. ABD’deki finansal futures işlemlerinin hepsi ve
futures
borsaları,
CFTC
tarafından
düzenlenmekte
ve
onun
denetimine
tabi
bulunmaktadırlar.
Bazı faiz futures sözleşmeleri ve işlem gördüğü borsalar aşağıda verilmiştir.
Faiz Futures Sözleşmeleri
Standart Kontrat
Kontrat
Büyüklüğü
Eurodollar
$1,000,000
Eurodollar
$1,000,000
Eurodollar
$1,000,000
US T-Bill
$1,000,000
US T-Bond
$100,000
US T-Note
$100,000
3 Aylık Sterlin
£500,000
Long Gilt
£50,000
Fransız Devlet Tahvili
FFr500,000
Japon Devlet Tahvili
¥100,000,000
Borsa
CME
LIFFE
SIMEX
CME
CBOT
CBOT
LIFFE
LIFFE
MATIF
TSE
3.2.3. Finansal Futures Piyasaların Globalleşmesi
Finansal futures sözleşmeler ilk defa Amerikan borsalarında gelişmeye başladığı
için, 1980’lerin başında ABD, bu piyasaya büyük ölçüde hakimdi. Örneğin, 1985 yılında
en yüksek işlem hacmine sahip 10 futures sözleşmesinin hepsi ABD’de alınıp satılmıştır.
Finansal futures işlemlerinde yaşanan bu hızlı büyüme sonucu Amerikan borsalarının
10
kârlılığı da artmıştır. Bu potansiyelden yararlanmak isteyen ve bu kâr pastasından pay
almak isteyen yabancı borsalarda bu işe girişmişlerdir.
Günümüzde uluslararası finansal piyasalar yapısal olarak değişmektedir. Bu
yapısal değişiklikler, aşağıdaki gelişmeler neticesinde görülmeye başlanmıştır. Bu
gelişmeler ise şunlardır:
♦ Finansal yeniliklerin gözlenmesi,
♦ Kredilerin finansal varlıklara dönüştürülmesi (menkul kıymetleştirme securitization),
♦ Finansal işlemlerin belirli merkezlerde, örneğin New York, Londra, Tokyo,
Zürich ve Frankfurt’ta toplanması,
♦ Finansal piyasaların bütünleştirilmesi, bir başka deyişle, ticaretin uluslararası
alana yayılması ve bunun sonucu olarak birçok yan piyasanın tek bir dünya
finans piyasası altında toplanması.
Bugün Đstanbul’daki bir yatırımcı günün herhangi bir saatinde dünyanın herhangi
bir borsasında işlem gören bir menkul kıymeti alıp satma imkanına sahiptir. 24 saat
işlem yapmaya imkan veren sistemin adı Globex’tir. Borsalar fiilen açık olmasa bile,
dünya çapında da her türlü menkul kıymet veya finansal futures sözleşmeler alınıp
satılabilmektedir. Bütün bunların bir sonucu olarak dünyadaki menkul kıymet ticaret
hacminde korkunç bir patlama yaşanmıştır.
Yukarıda
sayılan
gelişmeler,
uluslararası
finansal
piyasaların
değişmekte
olduğunu ve finansal piyasaların globalleştiğinin bir göstergesidir.
3.2.3. Futures Piyasaların Başarılarının Açıklanması
Devlet tahvili üzerine yapılan finansal futures sözleşmelerin işlem hacmindeki
korkunç büyümenin en önemli göstergesi, 5 Mart 1997 tarihinde tahvil sözleşmesi toplam
açık pozisyon sayısının 531.000’nin üzerinde oluşudur. Başka bir ifadeyle, bir devlet
tahvili futures sözleşmesinin büyüklüğünün 100.000 $ olduğunu hesaba katarsak faiz
finansal futures işlemlerinin toplam tutarı 100.000 $ X 531.000 adet = 53.100.000.000 $
olmuştur.
Finansal
futures
işlemler
ile
forward
işlemler
bulunmaktadır. Bunları aşağıdaki tabloda özetleyebiliriz:
11
arasında
bir
çok
fark
Özellikleri
Futures Sözleşmeler
Forward Sözleşmeler
Sözleşme
Her bir döviz kuru için
Đstenilen büyüklükte
büyüklüğü
standartlaştırılmış sözleşmeler
Vade
Yer
Fiyatlandırma
Đlk Ödeme
En uzunu genelde 1 yıldan az olan
Bir yıla kadar (bazen daha fazla süreli)
sabit vadeler
vadeler
Organize döviz zemini üzerinde
Đşlem bireylerle bankalar veya bankalar
işlem yapılır
arası olur
Açık arttırma süreciyle
Fiyatlar alış satış kotalarına göre
Piyasa değerine sabitlenmiş ilk pay
Bariz bir ilk ödeme olmamakla birlikte
şeklinde olmaktadır
bankaların talepleri çerçevesinde
olabilmektedir
Gerçekleştirme
Genelde vade sonu beklenmez ve
Karşılayıcı pozisyon mümkünse de
pozisyonu dengeleyici karşı alım
sözleşme gerçekleştirilir.
veya satımlar yapılır
Komisyon
Tek bir komisyon hem alış hem de
Perakendeci müşteri tarafında sağlanan
sonraki satışı karşılar
alış-satış farkından doğan komisyondur
Geleneksel olarak döviz saatlerinde
Đşlem Saatleri
işlem yapılır, fakat birçok döviz
Banka global ağı sayesinde günde 24 saat
türü şu anda günde 24 işlem
görüşme yapılır
görmektedir
Taraflar
Piyasa yapısının açık arttırma
Taraflar sözleşme maddelerini belirlerken
esasına dayanmasından dolayı
karşı karşıya gelirler
birbirlerini tanımazlar
Likidite
Likittir fakat toplam satış hacmi ve
Likittir ve toplam satış hacminde futures
değerinde göreceli olarak düşüktür
sözleşmelerine kıyasla göreceli olarak
yüksektir
Her vadeli işlem borsası tüm işlemleri takastan geçiren bir Takas Odası ya da
kurumuna sahiptir. Takas Odası borsanın bir organı olabileceği gibi bağımsız bir tüzel
kişiliği olan kuruluş da olabilir. Takas kavramı Takas Odası’nca yerine getirilen işlevleri
ifade etmektedir. Đlk olarak borsa üyeleri ilgili takas kurumuna tüm futures işlemlerinin
ayrıntılarını içeren günlük raporlar verirler. Takas Odası bu raporlara dayanarak kısa ve
uzun pozisyonları günlük olarak dengeler. Bir başka anlatımla Takas Odası her futures
işleminde karşı taraf olarak devreye girer ve borsada güveni sağlar. Takas Odası’nın
ikinci önemli fonksiyonu da sözleşmeleri, kur, faiz ve endeks değişimleri doğrultusunda
pazara göre uyarlamak, marj hesabını izlemek ve gerekli koşullarda alıcı ve satıcılardan
ek teminat ya da marj talep etmektir. Kazanç ve kayıpların günlük dengelenmesinin yanı
sıra Takas Odası günlük fiyat ve pozisyon limitleri ile pazarda kredi riskini en aza
indirmeyi de amaçlar.
12
3.2.4. Futures Piyasalar Marj Uygulamasına Sahiptir
Futures piyasalarda alıcı ve satıcı pozisyonlarının günlük dengelenmesi esastır. Bu
amaçla, marj uygulaması geliştirilmiştir. Bunlar; depozit marjı, başlangıç marjı,
sürdürme marjı ve dalgalanma marjıdır. Bunları şu şekilde açıklamak mümkündür:
Depozit Marjı
Futures işlemi yapılmadan önce taraflar borsada işlem yapan aracı kuruma
depozito yatırmak zorundadırlar. Bunun amacı, tarafları sorumluluklarını yerine
getirmeye zorlamaktır. Depozito miktarı, sözleşmeden sözleşmeye, aracı kurumdan
aracı kuruma göre değişebilir.
Başlangıç Marjı
Herhangi bir futures sözleşmesi yapılmadan önce yatırılan paradır. Bunun
miktarının futures sözleşmesinde meydana gelebilecek bir günlük maksimum fiyat
değişikliğine eşit olması istenir. Futures sözleşmesine ilişkin bütün sorumluluklar yerine
getirilip, sözleşme kapatıldığında, söz konusu tutar taraflara iade edilir.
Sürdürme Marjı
Sözleşme süresi içinde taraflardan birinin kayba uğraması söz konusu olursa, bu
kayıp, öncelikle başlangıç marjından karşılanır. Fakat başlangıç marjı kaybı karşılamaya
yetmez ise, bu durumda taraflardan ek para yatırmaları istenir.
Dalgalanma Marjı
Futures sözleşmesine konu olan malın fiyatında meydana gelen değişiklikler
nedeniyle kayba uğrayan tarafın başlangıç marjına ilave olarak yatırdığı depozito,
dalgalanma marjı olarak isimlendirilir. Alınan bu depozitolar, futures piyasalarının
güvenlik mekanizmalarıdır. Çünkü bu uygulama ile futures piyasalarında işlem yapanlar
meydana gelen zararları günlük olarak realize ederler ve yukarıda belirtildiği gibi,
depozitolar vasıtasıyla bunlar telafi edilir.
3.2.5. Finansal Futures Đşlemleriyle Faiz Oranı Riskinden Korunma (Hedging)
Bilindiği gibi finansal sistemin temel işlevlerinden biri de risk yönetimi için
gerekli olan ürün ve kurumları sağlamaktır.
Risk yönetiminin 3 yöntemi vardır:
1. Portföy çeşitlendirme (diversification),
2. Korunma (Hedging)
3. Sigorta (Insuarance).
13
Bu risk yönetim tekniklerinden özellikle hedging konusu üzerinde durmakta fayda
vardır. “Hedging; yatırımcıların döviz kurları ile faiz oranlarında ileride oluşabilecek
değişikliklerin yaratacağı risklerden korunmak amacıyla yapmış oldukları bir işlemdir.”
Geleneksel görüşe göre hedging işlemi, fiyat dalgalanmalarından dolayı oluşan
riski azaltmak için aynı anda hem spot piyasada hem de vadeli işlemler piyasasında
pozisyon almaktır. Burada hedge işlemi yapmada amaç, kar elde etmek değil
güvenliktir. Portföy (portfolio) teorisine göre hedging işlemi ise şöyledir. Vadeli
piyasada işlem yapanlar, piyasaya, veri bir risk seviyesinde en fazla getiriyi sağladığı için
girerler. Eğer piyasada aynı getiriyi sağlayan iki çeşit finansal araç varsa rasyonel
yatırımcı doğal olarak riski daha düşük olan aracı seçecektir. Burada ise amaç, riskten
korunmak değil, fayda fonksiyonunu maksimize etmektir1.
Örneğin, 3 ay içinde 3 milyon dolarlık alacağını tahsil edecek olan bir şirket bu
parayı 3 ay vadeli mevduat olarak yatırmayı düşünmektedir. Ancak, şirket ileride faiz
oranlarını düşeceğini tahmin ediyorsa, bu düşüşten korunmak için parasını o günkü cari
faiz oranından satmak üzere futures sözleşmesi satın alır. Bu durumda şirket o günkü
faiz oranından 3 milyon dolar tutarında Eurodollar mevduat sözleşmesi satın alarak faiz
oranlarındaki düşüşten korunmuş olur.
Hedging ile ilgili bir başka örnek daha verelim.
Spot Piyasa
Futures Piyasa
12 Şubat
Bir şirket 1milyon $ tutarındaki alacağının 2 ay
içinde kendisine havale edileceğini tahmin
etmekte ve bu parayı 3 ay vadeli Euro-Dolar
mevduat olarak yatırmayı planlamaktadır. Faiz
oranı %10’dur. Ancak şirket faiz oranlarının
düşeceğini beklemektedir.
Şirket, %10 faizli, 3 ay vadeli, 1 milyon $’lık
mevduat sözleşmesi satın alıyor. Böylece şirket
vade tarihinde 25.000 $ faiz elde edecektir.
8 Nisan
Faizler 3 puan geriliyor. Bu durumda şirket 12
Şubat tarihinde yatırım yapabilseydi elde edeceği
faize kıyasla 7.500$ tutarında bir kayba uğruyor.
Zarar : 1.000.000 $ X%3X3/12 = 7.500 $
1
Faizlerin düşmesinden sonra şirket, %7’lik yeni
faiz oranı üzerinden 1 milyon $’lık vadeli bir
mevduat sözleşmesi satıyor. Böylece kasasına
giren 1 milyon $’ın faizi olarak vade tarihinde
karşı tarafa 7.500$ ödemeyi taahhüt ediyor.
Kâr : 1.000.000 $ X%3X3/12 = 7.500 $
Namık Kemal Uyanık, “Vadeli Đşlemler Piyasaları”, Maliye Dergisi, Sayı:127, Ocak – Nisan 1998, s.72.
14
Görüldüğü gibi şirket, faizlerin %3 gerileyerek %7’ye düşmesiyle spot piyasada
uğradığı 7.500$’lık zararını, futures piyasada yaptığı işlemlerden sağladığı 7.500$’lık
karla telafi etmiş, böylece faiz riskini bütünüyle üstünden atmıştır.
Bankalar, sigorta şirketleri, emeklilik fonları, genel finans şirketleri ve yatırım
fonları gibi finansal kurumların yöneticileri faiz oranı riskini azaltmak için iki temel
hedging stratejisi kullanırlar: Mikro Hedge ve Makro Hedge. Bir finansal kurum, elinde
bulundurduğu bir finansal varlığın faiz oranı riskine karşı korunmak istiyorsa mikro hedge
veya elinde bulundurduğu bir portföyün faiz oranı riskine karşı kendini korumak istiyorsa
makro hedge yapacaktır. Bu hedging stratejilerinin nasıl yapıldığını bir örnekle
açıklayalım. First National Bankasının yöneticisi olan Mona, mikro ve makro hedging
yapmak için futures piyasaya girmiştir.
3.2.5.1. Mikro Hedge
Örneğimizdeki banka, nominal değeri 10.000.000 $, kupon faiz oranı %10 ve
vadesi 2010 yılında dolacak olan bir devlet tahvili satın almıştır. Uzun vadeli borçlanma
araçlarının faiz oranındaki değişikliklerin sermaye kazancı veya kaybına yol açacak fiyat
değişikliklerine neden olduğu yukarıda izah edilmişti. Bu riskten bir forward sözleşmesi
yapılarak korunulabilir. Fakat böylesi bir büyüklükte bir işlem için karşı taraf bulmanın
zorluğu açıklanmıştı. Bu yüzden Mona’da forward işlem yerine finansal piyasalara
girmeye karar vermiştir.
Bir hedge işleminin optimal olmasını engelleyen iki problem vardır: Bunlardan
ilki, hedge vadesi ile piyasadaki ilgili futures sözleşmenin vadesinin birbirine
uymayışından kaynaklanır. Đkinci problem ise vade tarihleri tümüyle uysa bile hedge
edilecek varlıkla ilgili uygun bir sözleşmenin olmayışı durumudur.
Mona, futures piyasasına girmekle birlikte, riskini yönetebileceği, riskini tam
karşılayacağı “%10 faiz oranlı 2010 vadeli bir futures sözleşmesi” bulamamıştır. Bu
durumda, Mona, bankanın elinde bulundurduğu varlıklara yakın bir risk düzeyinde
hareket eden finansal varlıklar üzerine yazılmış futures sözleşmesi aramaya başlamıştır.
Daha sonra, CBOT’da işlem gören Devlet Tahvili futures sözleşmesinin yapacağı hedging
işlemi için en iyi seçenek olduğuna karar vermiştir.
Bu hedging işlemi, futures
sözleşmesinin bağlandığı varlık hedging işlemi yapılan varlıktan farklı olduğu için
“Çapraz Hedging” olarak adlandırılır. Diğer bir ifadeyle, çapraz hedge (cross hedge),
hedge yapılan varlık ile futures sözleşmenin ilgili olduğu varlık arasında bir takım
farklılıkların olması durumunda yapılan hedge işlemidir.
15
Mona, faiz oranı riskinden korunmak için kısa pozisyon alması gerektiğini ve
Hazine Bonosu futures sözleşmesinde satıcı taraf olması gerektiğini bilmektedir. Eğer
bankanın elinde bulundurduğu tahvillerin fiyatı bankayı zarara uğratacak kadar düşerse,
bankanın bu zararı telafi etmek için bir futures işlemden o kadar kazanması
gerekmektedir. Eğer banka, kısa pozisyon alır ve sonra tahvilin fiyatı da düşerse, banka
piyasadan daha düşük fiyattan tahvil alacaktır.
Kısa pozisyon alması gerektiğini bilen banka yöneticisi, kaç tane sözleşme
satacağını hesaplamak zorundadır. Bu aşamada yapılacak ilk iş, hedge oranını
hesaplamaktır. Hedge oranı, cari piyasadaki riskten kaçınmak için kullanılacak futures
sözleşme sayısıdır. Başka bir ifadeyle hedge oranı; cari fiyattaki değişimin futures
fiyattaki değişime oranıdır. Birbiriyle bağlantılı fiyatların değişkenliğine ilişkin bu
tanımlama hedger’e, cari ve futures pozisyonların kombinasyonundan oluşan riskin
azaltılması için kaç tane futures sözleşmesinin alınması gerektiği konusunda yardımcı
olur.
Hedge oranı ile futures sözleşmeden elde edilecek kar veya zarar, spot piyasada
elde edilecek kar veya zararı telafi etmekte kullanılacaktır. Hedge yapılmadan önce
hedge oranını belirleyecek tam bir yöntem yoktur.
Örneğin, bir futures sözleşmesinin fiyatı 1 adım artarken, %10 faizli 2010 yıl vadeli
tahvilin ortalama fiyatı 1.1 adım yükseliyorsa, hedge oranı 1.1/1 =1.1 olacaktır.
Hedge oranı şu şekilde hesaplanır:
HR =
∆Pa
Xβ af
∆P f
(1)
1 nolu denklemde;
HR = Hedge oranını,
∆Pa = Faiz oranındaki %1’lik değişmeye karşı hedge edilen varlığın fiyatındaki %
değişikliği,
∆P f = Faiz oranındaki %1’lik değişmeye karşı futures sözleşmenin fiyatındaki %
değişikliği,
β af = Futures sözleşmenin faiz oranındaki belirli bir değişikliğin hedge edilen
varlığın faiz oranı üzerinde yarattığı ortalama değişikliği göstermektedir.
16
En uygun hedge oranını ve futures sözleşme sayısını belirlemenin amacı, cari ve
futures varlıklar arasındaki birbiriyle ilişkili fiyat değişikliklerini tümüyle ortadan
kaldıracak hedge pozisyonunu elde etmektir.
Mona, Mart 2000 tarihinde faiz oranlarının %10’dan %11’e yükseldiğinde,
bankanın elindeki Devlet Tahvillerinin fiyatındaki değişikliğin %6.58, Devlet Tahvili
futures sözleşmelerinin fiyatındaki değişikliğin de %5.98 olacağını hesaplamıştır. Hedge
edilen varlığın değerindeki değişikliğin futures sözleşme üzerindeki göreceli etkisi
%6.58/%5.98 = 1.10 olarak hesaplanacaktır.
Denklemde hesaplanması gereken ikinci değişken ise β af (Beta)’ dir. Beta, bize
hedge edilen varlıkla finansal futures sözleşmesinin birlikte nasıl hareket ettiklerini
gösterir. Örneğin β af = 0.95, futures sözleşmenin faiz oranı %1 arttığında, hedge edilen
varlığın faiz oranının %0.95 artacağını ifade eder. Bu değişken, borsalar tarafından
geçmiş istatistiki verilerden yola çıkarak hesaplanmakta ve yayınlanmaktadır.
Banka yöneticisi, futures sözleşmesinin faiz oranındaki %1 oranındaki artışın,
“%10 faiz oranlı 2010 vadeli Tahviller”in faiz oranında ortalama %1’lik bir değişmeye
neden olduğunu yani Beta katsayısını β af = %1 olarak hesaplamıştır.
O halde bu durumda hedge oranı şu şeklide hesaplanacaktır:
HR =
∆Pa
Xβ af
∆P f
denkleminde değerleri yerine koyalım.
HR = 1.10 X %1 = 1.10 olacaktır.
Mona, mevcut tahvillerini faiz oranındaki değişikliklere karşı korumak amacıyla
yapacağı hedge işlemi için gerekli futures sözleşmesi sayısını hesaplayabilecektir. Yalnız
burada, hedge oranının değerinin para denklik değeri hesaplanmalıdır. Para denklik
değeri vadeye göre değişiklik gösterebilir. Bu durumda hedge oranında bazı
değişikliklerin yapılması gereklidir. Bu değişiklikler söz konusu olduğunda sözleşme
sayısını verecek formül aşağıdaki gibi düzenlenebilir.
Sözleşme Sayısı = HRX
PVa
PV f
(2)
Burada;
HR = hedge oranını (örneğimizde 1.10’dur),
PVa = cari pozisyonun veya hedge edilecek varlığın nominal değerini (10.000.000
$’lık %10 faizli, 2010 vadeli Devlet Tahvili),
17
PVb = Futures sözleşmelerin nominal değerini (Devlet Tahvili Futures Sözleşmesi
başına 100.000 $) göstermektedir.
Sözleşme sayısı = 1.10 X 10.000.000 $ / 100.000 $
Sözleşme sayısı = 1.10 X 100 = 110.
Hedge işlemi yapabilmek için 110 tane futures sözleşmeye gerek vardır.
Bu hesaplamadan sonra, Mona; aracı kurumuna CBOT’da işlem gören 110 adet
Mart 2000 vadeli Devlet Tahvili futures sözleşmesinden satması talimatını verecektir.
Banka yöneticisinin yaptığı bu hedge işleminin sonuçlarına bir bakalım. Hem
futures sözleşmenin hem de Devlet tahvillerinin faiz oranının Mart 1999’dan Mart 2000
tarihine kadar olan dönemde %10’dan %11’e çıkması durumunda neler olacağını
inceleyelim. Daha önceden de gördüğümüz gibi, faiz oranlarının %10’dan %11’e
yükselmesi, %10 faizli 2010 vadeli tahvillerin fiyatında %6.58’lik bir azalmaya neden
oluyordu. Bundan dolayı, bir yıl içerisinde faiz oranının %1 oranında artması, nominal
değeri 10.000.000 $ olan bu tahvillerin değerinde 658.000$’lık bir kayba neden
olacaktır. Bir yıl içerisinde faiz oranının %1 oranında artması nominal değeri 100.000 $
olan futures sözleşmelerinin fiyatında %5.98 veya dolar olarak 5.980$’lık bir azalışa
neden olacaktır. 110 adet futures sözleşmesinde kısa pozisyon alan bankanın Mart 2000
tarihindeki kaybı sözleşme başına 5.980 $ olurken bu rakam toplamda 110 X 5.980$
=657.800$ olacaktır. Bu zarar, yaklaşık olarak elinde bulundurduğu tahvillerin kazancına
yakın bir tutar olmaktadır. (658.000 $, 657.800$). Ancak yapılan bu hegde işlemi yine de
mükemmel, tam bir hedging işlemi değildir.
3.2.5.2. Makro Hedge
Bankanın menkul kıymetler cüzdanında bulunan sabit getirili menkul kıymetlerin
faiz oranlarındaki değişikliğin banka sermayesinin piyasa değeri üzerindeki etkisini tam
olarak ölçebilmek için bankanın varlık ve borçlarının “süreleri veya durasyonları
(duration)” hesaplanmalıdır.
Macaulay tarafından geliştirilen “Durasyon” kavramı, yatırımın zaman boyutunu
da hesaba katarak, yatırımın sağladığı nakit akışlarını zaman ile ağırlıklandırarak
bugünkü değerinin belirlenmesi ilkesine dayanır. Durasyon, zaman ağırlıklı süre
ölçüsüdür. Bu vade, bütün nakit girişlerini ve çıkışlarını zamanları ile birlikte dikkate
alır. Durasyon, bir yatırım için kullanılan fonların yenilenmesi için gereken ortalama
süreyi ölçer ve efektif vadeyi gösterir. Efektif vadede, sözleşmelerle belirlenen vadeye
kıyasla yatırımın bugünkü değeri daha yüksektir. Çünkü vade, sadece dönem sonundaki
ödemeleri dikkate alır. Süre ise bütün ödemeleri zamanları ile birlikte dikkate alır.
18
First National Bankası’nın aktif toplamı 100.000.000$ ve durasyon açığı 1.72
yıldır. Eğer banka yöneticisi, Mart 1999’da 100.000.000$’lık Mart 2000 vadeli,
sözleşmelerin
bağlandığı
tahvillerin
ortalama
süresi
1.72
yıl
olan
futures
sözleşmelerinden satarsa ve gelecek yıl içerisinde faiz oranlarında bir artış -bankanın
değeri bundan olumsuz etkilenecektir- futures sözleşmelerdeki kısa pozisyondan dolayı
elde edilecek karlarla telafi edilebilecektir. Başka bir ifadeyle makro hedge oranı
aşağıdaki gibi olacaktır.
VF X DURF = - VA X DURGAP
(3)
Burada;
VF : futures sözleşmenin değerini,
VA : bankanın aktif toplamını,
DURF : futures sözleşmesinin yazıldığı tahvillerin ortalama süresini,
DURGAP: bankanın süre açığını göstermektedir.
3.2.6. Finansal Futures Đşlemlerle Hedge Yaparken Ortaya Çıkan Bazı Sorunlar
Finansal futures işlemleri, finansal kurumların yöneticilerine faiz oranı riskini
azaltmalarına yardımcı olmasına rağmen, bu kurumların yöneticileri finansal futures
işlemlerle hedging işlemi yaparken iki temel sorunla karşılaşmaktadır.
3.2.6.1. Baz Riski (Basis Risk)
Baz, futures piyasalarda en önemli kavramlardan biridir. Baz, futures fiyat ile
peşin fiyat arasındaki farktır.
Baz = Futures Fiyat – Peşin Fiyat
Eğer futures fiyat ile peşin fiyat arasındaki dalgalanmalar bire bir ise, yani
birlikte hareket ediyorlarsa baz sabittir. Ancak uygulamada, söz konusu fiyatlardaki
dalgalanmaların aynı olmayacağı için daima bir risk vardır. Bu riske baz risk denir. Mikro
hedge işlemini anlatırken bu olayı temsil etmek üzere hedge oranı denklemine β af
değişkenini eklemiştik. Bununla birlikte, bu değişken bize sadece hedge edilen finansal
varlıkla futures sözleşmenin ortalama olarak birlikte ne kadar hareket ettiği,
dalgalandığı konusunda bilgi sağlamaktadır. Örneğin, β af =1 olduğunu varsayalım. Buna
göre cari varlık ile futures sözleşmesinin faiz oranları tam olarak birlikte hareket
edecektir. Ancak ortalama olarak bunların daima aynı şekilde ( β af =1 olsa bile) hareket
edeceğini düşünmek yanlış olur.
19
Banka yöneticisinin hesapladığı mikro hedge oranına baktığımızda, hedge
oranının yüksek fakat hedge edilen varlıkla futures sözleşme arasında mükemmel
olmayan bir korelasyon görürüz. Bundan dolayı bu işlemde yüksek olmamakla birlikte
baz riski ortaya çıkacaktır. Baz riski minimize etmek için, finansal kurumun yöneticisi,
hedge edeceği cari varlığın faiz oranı ile aynı şekilde dalgalanacak veya yüksek bir
korelasyona sahip bir futures sözleşmesi seçecektir.
3.2.6.2. Muhasebe Problemleri
Finansal futures işlemlerle hedging yapılması durumunda ortaya çıkan ikinci
sorun finansal kurumların kullandığı muhasebe sisteminden kaynaklanmaktadır. Genel
kabul görmüş muhasebe kurallarına göre, belirli bir varlık için değil fakat bir finansal
kurumun portföyünün tamamı için makro hedging yapıldığında, ortaya çıkan kar veya
zarar tutarları kurumun portföyünün üzerinden elde edeceği gerçek olmayan veya fiktif
kar veya zarar tutarları ile dengelenmemektedir.
3.3. Borsa Endeksi Futures Sözleşmeleri (Stock Index Futures)
Futures işlemler sadece faiz oranları riskini yönetmede değil aynı zamanda piyasa
riskinin yönetilmesinde de kurumsal yatırımcılara yardımcı olmaktadır.
Piyasa riski,
hisse senetleri fiyatlarının dalgalanmasından kaynaklanmaktadır. Borsa endeksi futures
sözleşmeleri, hisse senedi piyasalarındaki riskleri yönetme ihtiyacını karşılamak için
1982 yılında geliştirilmiş ve kısa zaman içerisinde en yaygın kullanılan finansal futures
işlemlerinin başında gelmiştir.
Belirli bir borsa fiyat endeksi ile değeri belirlenen hisse senedi portföyünün, ileri
bir tarihte, fiyatı bugünden belirlenmek koşuluyla alınıp satılmasını içeren sözleşmelere
endeks futures sözleşmeleri denir. Bu sözleşmelerin temel fonksiyonu, herhangi bir hisse
senedi portföyünün sistematik riskine karşı koruma sağlamaktır. Borsa endeksi futures
sözleşmelerinde belirli endeksler üzerinde işlemler yapılmakta ve belirli bir gelecek
tarihte söz konusu endekse verilecek değer bugünden belirlenmektedir.
Teslim tarihi (vade) geldiğinde spot piyasadaki endeks değeri ile futures
sözleşmesinde mutabık kalınan endeks değeri arasındaki fark, sözleşmeyi alan veya
satan tarafa nakit olarak ödenmektedir. Endeks futures sözleşmelerinde teslimat hemen
hemen hiç olmamaktadır.
Borsa endeksi futures sözleşmeleri, belli başlı bazı uluslar arası endekslere dayalı
olarak oluşturulurlar. Bunlar arasında en fazla işlem gören borsa endeksi futures
sözleşmesi S&P 500 Endeksine dayalı futures sözleşmeleridir.
20
Endeks futures sözleşmelerinin fiyatlaması şu şekilde yapılmaktadır: Söz konusu
borsa endeksinin günlük değeri, her bir futures borsası tarafından belirlenen standart bir
kontrat büyüklüğü ile çarpılır.
Aslında bir dolar değeri olan bu çarpan sözleşmeye
parasal bir değer biçmede yardımcı olur. Örneğin, NYSEI futures sözleşmesinin
büyüklüğü 500$’dır. NYSEI’nin işlem yapıldığı günkü değeri bu 500$ çarpanı ile çarpılarak
sözleşmenin parasal bir değeri bulunur ve sözleşme bu fiyattan satılır. Đleride vade
tarihindeki endeks değeri yine 500$’la çarpılarak iki parasal değer arasındaki fark,
sözleşme sahibine ödenir. Bu şekilde sözleşme sahibi, hisse senedi fiyatlarının ve ilgili
endeks değerinin gelecekteki olası yükselişine karşısında almak istediği hisse senetlerini
yüksek fiyattan satın alma riskine karşı veya elindeki hisse senedi portföyünün endeksin
gelecekte değer kaybetme riskine karşı kendini koruma altına almış olacaktır.
Endeks futures sözleşmeleri puan (point) cinsinden kote edilmiştir. Örneğin,
Şikago Ticaret Borsasında işlem gören S&P 500 Futures sözleşmesi için bir puan 500$’a,
minimum fiyat değişimi bir puanın %5’ine veya sözleşme başına 25$’a eşittir.
Diğer futures sözleşmelerin aksine endeks futures sözleşmeleri nakdi ödeme ile
kapatılırlar. Fiziksel bir mal veya hisse senedinin devri söz konusu değildir. Son işlem
günündeki açıktaki tüm pozisyonlar nakdi dengeleme (cash settlement) yolu ile tasfiye
edilirler.
Örnek: ABD’deki bir işletme, New York Borsasından 1 ay sonrası için bileşik
endeksin 115 puan olacağını düşünerek 4 adet borsa endeksi futures sözleşmesi satın
almıştır. New York Borsasında endeks futures sözleşmelerine ati standart sözleşme
büyüklüğü 500$ olduğu için sözleşmelerin parasal değeri, (500$ X115.00) X 4 = 230.000
$’dır. Başlangıç teminatının her bir sözleşme için 12.000 $ olması durumunda yatırılacak
olan toplam tutar 4*12.000$ = 48.000$’dır. New York Borsasında tik büyüklüğü %5 yani
dolar bazında değeri de 25$’dır. Đki gün sonra endeksin 119.00’a yükselmesi durumunda
yatırımcı, [(119.00 -115.00) / 0.05] X 25 $ X 4 = 8.000 $ kazanacaktır. Bu tutar,
yatırımcının tercihi doğrultusunda ya hesabına aktarılacak ya da kendisine nakit olarak
ödenecektir.
3.3.1. Borsa Endeksi Futures Sözleşmelerinin Kullanılması
Finansal kurumların yöneticileri, piyasa riskini yönetebilmek için borsa endeksi
futures sözleşmelerini iki amaçla kullanmaktadır: a) Sistematik riski azaltmak, b) Hisse
senedi fiyatlarını sabitlemek.
21
3.3.1.1. Sistematik Riski Azaltmak
Sistematik risk, çeşitlendirme ile giderilemeyen, ortadan kaldırılamayan risktir.
Sistematik riskin ölçüsü betadır (β). Bir hisse senedi yatırımında beta; o hisse senedinin
endeksle olan ilişkisini gösterir. Bir hisse senedinin β’sı 1’ den büyük ise (β>1) hisse
senedinin fiyatındaki değişim endeksteki değişimden daha hızlıdır. Eğer β<1 ise hisse
senedinin fiyatındaki değişim endeksteki değişimden daha yavaş olmaktadır. Yatırımcı
bir hisse senedine yatırım yaparken endekse bakmalı, eğer endeks yükseliyorsa β’sı
1’den büyük olan hisse senetlerini; eğer endeks düşüyorsa β’sı 1’den küçük olan hisse
senetlerini seçmelidir. Piyasa portföyünün (S&P 500 Endeksi gibi) değerinde meydana
gelen %1 artış hisse senedinin değerinde %2 oranında bir artışa yol açıyorsa bu hisse
senedinin β’sı 2 olarak hesaplanır. Hisse senedinin β’sı ne kadar yüksekse riski de o
oranda yüksektir.
Sistematik riski hedge etmek için satılması gereken sözleşme sayısını aşağıdaki
formülle hesaplayabiliriz:
Sözleşme Sayısı = β X Portföyün Değeri / Sözleşmenin Değeri
(4)
Örnek Olay* : Bir finansal kurumun portföyündeki hisse senetleri ve bu hisse
senetlerinin fiyatı, adeti ve betası aşağıdaki tabloda verilmiştir. Portföy yöneticisi, bu
portföyün sistematik riskine karşı korunmak için borsa endeksi futures sözleşmelerinden
yararlanmak istemektedir. Yöneticinin izleyeceği stratejinin ne olacağı ve bu hedge
işleminin sonuçları aşağıda incelenmiştir.
Hisse Senedi
A
B
C
Fiyat ($)
80
25
104
Miktar (adet)
400.000
625.000
250.000
Beta
1.15
0.94
1.36
Piyasa Değeri ($)
32.000.000
15.625.000
26.000.000
73.625.000
Portföyün Toplam Değeri
Ağırlıklı Portföy Betasını aşağıdaki gibi hesaplayabiliriz.
=1.15(32.000.000$/73.625.000$)+0.94(15.625.000$/73.625.000$)+1.36(26.000.000$/73.625.000$)
= 0.499 + 0.199 + 0.480 = 1.18
Fon yöneticisi, kısa vadede hisse senedi fiyatlarının düşeceği konusunda
endişelenmektedir. Bu durumda muhtemel strateji, portföyü karşılığında borsa endeksi
futures sözleşmesi satarak kısa pozisyona geçmektir (short hedge). S&P 500 Endeksinin
*
Bu örnek olay hazırlanırken, “Đhsan Ersan, Finansal Türevler, 2. Baskı, Literatür Yayınları, 1998, ss.80-81” adlı kaynaktan
geniş ölçüde yararlanılmıştır.
22
cari değerinin 122.20 olduğunu ve 6 Temmuz tarihinde aşağıdaki fiyatların geçerli
olacağını varsayalım.
Eylül S&P 500 Futures =121.80
Aralık S&P 500 Futures =121.70
Mart S&P 500 Futures =121.70
Portföy yöneticisi eğer portföyünü 6 Temmuz ve Eylül sonu itibariyle hedge
etmek isterse Mart futures sözleşmesini kullanacaktır. Eğer portföyün betası 1 olsaydı,
futures sözleşmelere eşdeğer dolar satarak tüm risk telafi edilebilirdi.
Mart futures sözleşmesinin fiyatı = 121.70
Dolar olarak değeri
Betası
1.0
olan
= 121.70 X 500$ = 60.850$
bir
portföy
için
optimal
hedge
oranı
aşağıdaki
gibi
hesaplanacaktır.
= 73.625.000$ / 60.850$ = 1.209,9 sözleşme.
Örneğimizdeki portföyün betası 1.16 olduğuna göre, bu portföyü hedge etmek
için gerekli futures sözleşme sayısı 1.209,9 X 1.16 = 1.403,5’tir. Başka bir ifadeyle,
portföye uygun bir short hedge yapabilmek için 1.404 adet endeks futures sözleşmesinin
satılması gerekmektedir.
6 Temmuzdan Ağustos sonuna kadar hisse senedi piyasasının %10 düşmesine
karşılık S&P 500 Endeks futures sözleşmesinin fiyatının %9.80’lik bir azalışla (121.7 –
(121.7 X 0.098)) 109.75’e düştüğünü varsayalım. 30 Ağustos sonu itibariyle aşağıdaki
fiyatlar gözlemlenmiştir.
Hisse Senedi
A
B
C
Fiyat ($)
72.8
22.75
83.20
Miktar (adet)
400.000
625.000
250.000
Beta
1.15
0.94
1.36
Piyasa Değeri ($)
29.120.000
14.218.750
20.800.000
% Değişim
- 9.00
- 9.00
-20.00
Portföyün Toplam Değeri : 64.138.750
Bu durumda ortaya çıkan nakdi pozisyon kaybı;
73.625.000$ - 64.138.750$ = 9.486.250$ olacaktır.
Futures pozisyon kazancını hesaplamak için bu futures sözleşmenin değer
azalışının kaç tick’e denk geldiğini hesaplayalım. (121.70 -109.75 / 0.05) = 239 ticks
olarak hesaplanacaktır.
23
Futures pozisyon kazancı;
1.404 sözleşme X tick başına 25$ X 239 ticks = 8.388.900$ olacaktır.
Yapılan bu hedge işleminin etkinliği de 8.388.900$ / 9.486.250$ = %88.5
olmuştur.
Hedge
işlemi
oldukça
başarılı
olmasına
karşın
tam
bir
korunma
sağlayamamaktadır. Bunun bir nedeni, S&P 500 Endeksinin %10’luk bir düşüşle
122.20’den 109.98’e inmesine karşılık Mart S&P 500 futures sözleşmesinin yalnızla
%9.8’lik bir azalmayla 121.70’ten 109.75’e düşmesidir. Ayrıca, hisse senetlerinin
betalarının piyasayı tam olarak temsil edebilme özelliklerinin de olmaması başka bir
neden olarak gösterilebilir.
3.3.1.2. Hisse Senedi Fiyatlarını Sabitlemek veya Kilitlemek
Bir portföy yöneticisi, şirketinin gelecekte yatırım yapabileceği bir nakit akışı
sağlayacağını bilmekte ve hisse senedi piyasasının yükselişe geçeceğine inanmaktadır.
Bu durumda portföy yöneticisi, gelecekte eline geçecek nakit akışını bu günden hisse
senetlerine yatırarak hisse fiyatlarını sabitlemek isteyecektir. Ancak bunu tek tek hisse
senetleriyle yapamaz. Bunu, piyasanın bütününü kapsayan bir hisse senedi futures işlemi
ile gerçekleştirebilir.
Hisse senedi endeksi futures sözleşmelerin bu amaçla nasıl kullanıldığını
açıklamak için, Ocak ayında Rock Solid Şirketi’nin portföy yöneticisi Mort, patronu
tarafından Mart ayı sonunda 20.000.000$ prim gelirinin tahsil edileceği konusunda
bilgilendirilmiştir. Eğer Mart ayına endeks futures sözleşmesinin fiyatı 400 puan olursa,
yönetici Mart ayı sonunda S&P 500 Endeksinin %5 artarak 420 puana çıkacağını
beklemektedir. Bu amaçla, portföy yöneticisi, 400 puan üzerinden endeks futures
sözleşmesinde
20.000.000$’lık
uzun
pozisyon
almayı
planlamaktadır.
Her
bir
sözleşmenin değeri 400 X 500$ = 200.000$ olduğu için, alınacak sözleşme sayısı
20.000.000$ / 200.000$ = 100 adet olacaktır. Bu futures sözleşmelerinin satın
alınmasıyla, Mart ayında elde edilecek olan 20.000.000$’la alınabilecek hisse senedi
sayısı kadar hisse senedi alınabilmesi şimdiden garantilenmiş olmaktadır.
S&P 500 Endeksi 420 puana yükselirken hisse senetlerinin fiyatları da beklenildiği
üzere %5 artarsa, sözleşme başına 10.000$ kar elde edecektir. (420X500$ = 210.000$ 200.000$= 10.000$). Toplamda karı da 10.000$ X 100 = 1.000.000$ olacaktır.
Yukarıda da görüleceği üzere, bir hisse senedi endeks futures sözleşmesi, riski
azaltmada kullanıldığı için çok faydalı bir enstrümandır.
24
3.4. Döviz Futures Sözleşmeleri
Döviz futures sözleşmesi; satın alan tarafı belli bir döviz tutarını, gelecekteki
belli bir tarihte, sözleşmenin yapıldığı tarihte belirlenen belli bir kurdan satın almaya
mecbur tutan anlaşmadır. Sözleşmenin tarafları vade sonunda sözleşmelerini ters bir
işlemle kapatmazlarsa, alıcı ve satıcının söz konusu dövizi teslim alma ve teslim etme
yükümlülükleri doğar. Döviz futures sözleşmeleri de diğer futures sözleşmeleri gibi
organize borsalarda işlem görürler. Sözleşmeler, birim veya lot olarak işleme tabi
tutulur veya yabancı paranın yerel para birimine göre ifade edildiği Amerikan tipi
kotasyonla uygulanır. Mesela, Chicago Borsasında bir Alman Markı sözleşmesinin işlem
birimi veya lotu 125.000 DM’dir.
Örneğin, bir yatırımcı, 15.000.000$’lık bir forward sözleşmesi satın aldığında bu
pozisyonu vade sonuna kadar bekletmek zorundadır. Bu süre içerisinde hedging
amacıyla, aynı vade ve tutarda bir satış işlemi yapsa bile alış ve satış kurları birbirinden
farklı olacağı için bu kurlar arasındaki fark, kar veya zararla sonuçlanabilecektir. Oysa
ki, 15.000.000$’lık bir futures sözleşmesi alan yatırımcı, piyasadaki beklentiler
doğrultusunda ve kendinden yeni bir fon ayırmadan karşıt ticaret yoluyla aynı vadeye
sahip 15.000.000$’lık bir futures sözleşmesi satarak pozisyonunu vadeden önce
kapatabilmektedir. Vade, tutar ve fiyat açısından belirli standartlar çerçevesinde
gerçekleştirilen futures işlemleri bu özelliklerinden dolayı forward işlemlere kıyasla
üstünlüğe sahiptirler.
3.4.1. Döviz Kuru Riskine Karşı Futures Đşlemleri Đle Hedging Yapılması
Döviz kuru futures sözleşmeleri, yabancı para cinsinden aktifi ve pasifi olan
kuruluşların yararlanabilecekleri bir risk yönetim aracıdır.
First National Bankasının yöneticisi Mona, bankanın döviz kuru riskini hedge
etmek için döviz kuru futures sözleşmelerinden yararlanmak istemektedir. Chicago
Mercantile Exchange (CME)’da birim sözleşme fiyatı 125.000DM ve mark başına 0.50$
olan futures sözleşmeler işlem görmektedir. Hedge işlemi yapabilmek için, Mona’nın
20.000.000 DM’lik futures sözleşmesi satması gerekmektedir. Başka bir ifadeyle,
20.000.000 DM/125.000DM = 160 tane döviz kuru futures sözleşmesi satmak zorundadır.
1DM = 0.50$ kurundan bu sözleşmelerin vade tarihindeki satış değeri;
125.000DMX160X0.50 = 10.000.000$ olacaktır.
Futures piyasaları kullanmanın bir başka avantajı ise 125.000DM veya eşdeğeri
62.500$ gibi futures sözleşme büyüklüğünün, forward işlem yapabilmek için gerekli
minimum sözleşme büyüklüğünden çok daha küçük olmasıdır. Bu durumda banka
25
yöneticisi, riskini hedge edebilmek için daha çok işlem yapacağından forward ve futures
piyasalarındaki işlem maliyetleri hangi piyasadan daha çok yararlanacağı konusunda
temel gösterge olacaktır. Banka fiilen forward piyasalarda yer alıyorsa, işlem maliyetleri
banka açısından daha düşük olacaktır veya banka ara sıra döviz kuru futures
sözleşmelerinden yararlanıyorsa, banka yöneticisinin futures piyasalara kayması daha iyi
sonuçlar verecektir.
ABD’li bir ithalatçı, 125.000 DM tutarında mal ithal etmek ve 1 ay sonunda
ödeme yapmak üzere anlaşma yapmıştır. Spot piyasada döviz kuru 1DM= 0.3984$’dır.
Đthalatçı, markın dolar karşısında değer kazanması ve dolar cinsinden maliyetlerinin
yükselmesi karşısında kendini döviz kuru riskinden korunmak için 1DM= 0.4010$
kurundan 1 ay vadeli 125.000 DM’lik futures sözleşmesi satın alır. Buna göre, döviz kuru
0.4010$ olmak üzere 125.000 DM eşdeğerinde 50.125$’lık futures sözleşmesini satın alan
ithalatçı vade bitiminde yani 1 ay sonra 50.125$ karşılığında 125.000 DM satın alacaktır.
Vade bitiminde spot kur ne olursa olsun, sözleşme sahibi 1 Alman Markını 0.4010
kurundan alacaktır. Eğer 1 ay sonra spot kur 0.4114’e çıkarsa ve hiçbir futures işlemi
yapılmamış olsaydı bunun işletmeye maliyeti [(0.4114 – 0.3984)X125.000 DM] 1.625$
daha fazla olacaktı. Ancak, ithalatçı işletme futures sözleşmesi satın alarak [(0.4114 –
0.4010)X125.000 DM] 1.300$’lık kâr elde etmiş olmaktadır.
26
Download