DC AKIM ÖLÇMELERİ Doğru Akım Doğru akım, zamana bağlı olarak yönü değişmeyen akıma denir. Kısa gösterimi DA (Doğru Akım) ya da İngilizce haliyle DC (Direct Current) şeklindedir. Doğru akımın yönü değişmese de şiddeti değişebilir. Buna göre doğru akım iki başlık altında incelenebilir. Düzgün Doğru Akım Zamana göre yönü de şiddeti de değişmeyen akıma düzgün doğru akım denir. Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir. MULTİMETRE İLE GERİLİM, AKIM VE DİRENÇ ÖLÇÜMLERİ Elektrik akımının şiddetini ölçmeye yarayan aletlere “Ampermetre”, gerilimin şiddetini ölçmeye yarayan aletlere “Voltmetre” ve direnç ölçmeye yarayan aletlere “Ohmmetre” denir. Her bir büyüklüğü ölçmek için farklı alet kullanılabileceği gibi, bir aletle bu üç büyüklüğün ölçülmesi de mümkündür. Bu tür aletler, ölçtükleri büyüklüklerin birimlerinin baş harfleri (Amper Volt Ohm) yardımıyla “AVO metre” olarak adlandırılırlar. Gerilim, akım ve direnç ölçmenin yanında diyot testi, kapasite, transistör kazancı ve sıcaklık ölçme gibi ilave ölçümler de yapabilen ölçü aletlerine ise “Multimetre” adı verilir. Uygulamada el tipi ve masa tipi olmak üzere iki tip multimetre kullanılır. Hiçbir ölçü aleti ve hiçbir devre elemanı ideal (kayıpsız) olmadığı için, ölçü aletleri ile ölçülen değerler, teorik olarak hesaplanan değerlerden her zaman farklı olacaktır. Ancak, günümüzde çok yüksek doğruluğa sahip dijital (sayısal) multimetreler üretilmiştir ve bu aletlerle yapılan ölçümlerde alet hatası oldukça azaltılmıştır. Özellikle masa tipi multimetrelerin doğruluğu daha yüksektir. AKIM ÖLÇME Doğru akım ölçme işlemi yapan bir ampermetenin kendi iç direnci oldukça küçüktür. İdeal ampermetrede sıfır olması gereken bu direnç ampermetenin sınıfına göre 1Ω’ dan daha küçüktür. Bu nedenle bir devre elemanın üzerinden geçen akım ölçülmek istendiğinde ampermetre o elemana SERİ bağlanmalıdır. Ampermetrenin Yükleme Etkisi Ampermetre devreye seri bağlandığında, ampermetrenin kendi iç direnci kadar seri bir direnç devre ilave edilmiş olur. Bu etkiye yükleme etkisi adı verilir. Ödev: Bir devre üzerinde birbirinden bağımsız iki nokta arasında bir gerilim varsa, bu iki nokta arasında elektrik akımı akacaktır. Bu akımı ölçebilmek için, multimetrenin doğal olarak akım yolu üzerine (Şekil’de A noktası ile yük arasına veya B noktası ile yük arasına) yerleştirilmesi gerekir. Bu işleme seri bağlama denir. Ancak bu işlemden önce, multimetrenin uygun akım ölçme konumuna (A-mA veya µA) alınması gerekir. Şekil’de elektrik akımını ölçebilmek için multimetrenin örnek kullanım şekli görülmektedir. GERİLİM ÖLÇME Gerilim; tanım gereği bir devrede iki nokta arasındaki potansiyel farkı olduğuna göre, gerek DC ve gerekse AC gerilim ölçerken multimetre problarının birbirinden bağımsız olan bu noktalara temas ettirilmesi gerekir. Bu işleme paralel bağlama denir. Bir iletken üzerindeki tüm noktalar arasındaki potansiyel farkları yaklaşık sıfır olacağına göre, bu iletken üzerinde herhangi iki nokta arasındaki gerilimi ölçmek anlamsız olacaktır. Şekil’de bir kaynak ve bir yükten (direnç veya empedans) oluşan en basit devre gösteriminde, multimetrenin A-B noktaları arasındaki gerilimi ölçmek için nasıl kullanılması gerektiği görülmektedir. Ancak ölçme işleminden önce multimetrenin mutlaka uygun gerilim ölçme konumuna (AC veya DC) alınması gerekir. DİRENÇ ÖLÇME Direnç ölçme işleminin mümkün olan en az hatayla yapılabilmesi için, ölçülecek direncin değerine bağlı olarak farklı yöntemler uygulanır. Değeri 1 µΩ ile 1 Ω arasında olan dirençlerin değeri Thomson doğru akım köprüsü ile, değeri 1 Ω ile 1 MΩ arasında olan dirençlerin değeri multimetre veya Wheatstone doğru akım köprüsü ile, değeri 1 MΩ ’dan büyük olan dirençlerin değeri ise multimetre ile ölçülür. Pratikte kullanılan dirençlerin büyük çoğunluğu 1 Ω ile 1 MΩ arasındadır. Multimetre ile direnç ölçümü iki farklı şekilde yapılabilir. 1- Multimetrenin direnç ölçme konumu kullanılarak, 2- DC gerilim kaynağına bağlanan direncin akım ve gerilimini ölçtükten sonra Ohm kanununu uygulayarak. Birinci durumda (ohmmetre yöntemi), eğer ölçülen direnç bir devre üzerindeyse, ölçüm yapmadan önce, direncin en az bir bacağının devre ile bağlantısı kesilmelidir. Multimetre İle Doğrudan Direnç Ölçümü İkinci durumda ise, direnç değerine ve kabul edilebilen hata sınırına bağlı olarak voltmetre-ampermetre veya ampermetrevoltmetre yöntemi kullanılabilir. Multimetrenin ampermetre olarak kullanılması durumunda iç direncinin çok küçük (0,1 Ω civarında) ve voltmetre olarak kullanılması durumunda ise çok büyük (10 MΩ civarında) olduğu bilinmektedir. Eğer en fazla %1 civarında oluşacak bir yöntem hatasına göz yumulursa, 1 Ω ile 100 KΩ aralığındaki direnç değerlerini ölçmek için şekil a’daki ölçme devresi (voltmetre-ampermetre yöntemi), 10 Ω ile 1 MΩ arasındaki direnç değerlerini ölçmek içinse şekil b’deki ölçme devresi (ampermetre-voltmetre yöntemi) kullanılmalıdır. Buradan anlaşılacağı gibi; 10 Ω ile 100 KΩ arasındaki direnç değerlerinin ölçümleri için her iki yöntem de kullanılabilir. Şekil a: Voltmetre – ampermetre yöntemi ile direnç ölçümü Şekil b: Ampermetre – voltmetre yöntemi ile direnç ölçümü DİRENÇ RENK KODLARI BREADBOARDLAR (PROTOBOARDLAR) Breadboardlar elektronik devre elemanlarından oluşan bir devrenin deneysel olarak kurulması için kullanılan yatay ve dikey iletken metal çubukların olduğu delikli bir araçtır. Genellikle iki tip breadboard mevcuttur. Aşağıdaki şekillerde, bu breadboardlar üzerindeki noktaların birbiriyle ne şekilde bağlı olduğu görülmektedir. Deney-1 Direnç renk kodları tablosunu kullanarak, verilen dirençler içerisinden 1 Ω, 47 KΩ ve 470 KΩ değerlerindeki dirençleri tespit ediniz ve tolerans değerlerini hesaplayınız. Aynı dirençleri bu kez multimetrenin direnç ölçme konumunu kullanarak ölçünüz. Her bir direnç için mutlak ve bağıl hatayı hesaplayınız. Ohmmetre Yöntemi Teorik Direnç Değerleri (R ± Tolerans) 1Ω ± ………….. 47 KΩ ± ………….. 470 KΩ ± ………….. R Mutlak Hata Bağıl Hata Deney-2 Şekil ’de görülen ölçüm devresini, 𝑅𝑋 = 1 Ω ve 𝑅 = 150 Ω dirençlerini kullanarak protobord üzerinde kurunuz. Devreye 5 Volt DC gerilim uygulayınız. Multimetrelerden birini DC gerilim ölçme, diğerini ise uygun akım ölçme konumuna aldıktan sonra okuduğunuz gerilim ve akım değerlerini kullanarak 𝑅𝑋 değerini hesaplayınız. Aynı işlemleri 𝑅𝑋 = 47 KΩ ve 470 KΩ için tekrarlayınız. Her bir direnç için mutlak ve bağıl hatayı hesaplayınız. V-A Yöntemi Voltmetre – ampermetre yöntemi ile direnç ölçümü Teorik Direnç Değerleri (R ± Tolerans) 1Ω ± ………….. Ω 47 KΩ ± ………….. KΩ 470 KΩ ± ………….. KΩ V I R Mutlak Hata Bağıl Hata Deney-3 Şekil ’de görülen ölçüm devresini, 𝑅𝑋 = 1 Ω ve 𝑅 = 150 Ω dirençlerini kullanarak protobord üzerinde kurunuz. Devreye 5 Volt DC gerilim uygulayınız. Multimetrelerden birini DC gerilim ölçme, diğerini ise uygun akım ölçme konumuna aldıktan sonra okuduğunuz gerilim ve akım değerlerini kullanarak 𝑅𝑋 değerini hesaplayınız. Aynı işlemleri 𝑅𝑋 = 47 KΩ ve 470 KΩ için tekrarlayınız. Her bir direnç için mutlak ve bağıl hatayı hesaplayınız. A-V Yöntemi Ampermetre – voltmetre yöntemi ile direnç ölçümü Teorik Direnç Değerleri (R ± Tolerans) 1Ω ± ………….. Ω 47 KΩ ± ………….. KΩ 470 KΩ ± ………….. KΩ V I R Mutlak Hata Bağıl Hata Sonuç Ohmmetre, V-A ve A-V yöntemleriyle hesaplanan direnç değerlerini teorik değerler ile karşılaştırarak yöntemleri yorumlayınız. Ohmmetre Yöntemi Teorik Direnç Değerleri (R ± Tolerans) 1Ω ± ………….. Ω 47 KΩ ± ………….. KΩ 470 KΩ ± ………….. KΩ R Mutlak Hata V-A Yöntemi Bağıl Hata V I R Mutlak Hata A-V Yöntemi Bağıl Hata V I R Mutlak Hata Bağıl Hata