ÇANKAYA UNIVERSITY Department of Mathematics MATH 258 - Introduction to Differential Equations SECOND MIDTERM EXAMINATION 05.12.2016 STUDENT t __ \ 1«; Question NAME-SURNAME: "",I SIGNATURE: INSTRUCTOR: DURATION: Grade Out of NUMBER: 110 minutes IMPORTANT 1 20 2 25 3 25 4 30 Total 100 NOTES: ı) Please make sure that you have written your student number and name above. 2) Check that the exam paper contains 4 problems. 3) Showall your work. No points will be given to correct answers without reasonable work. Question 1. Find the general solution of the differential equation yili r>~"(" 'l. + '2.. ~ r'l. = "l. ').. «'~~)+ '2... ~('~ \'~.4 ıt:. 'cl (' of- - '3.6 A.) ~ L + yıl + 27y' + 27y = o. i (' e» -=- + • 'S-f'\ L '." Question 2. Solvethe ıvP yıl _ 3y' ~ z: d \~ v' Ci '2..)( e,'\ +~ e - + 2y = 2ex + 4; + 'L 2...~e.l( C\ ~ ~ +'Lt1..e ~X _'Le. ~ -'1... X ~i y(O) = O, y'(O) = ~ (. E)) e: x, d i( l» ı. -=- o .zzz;» J{ =:> :::. Question 3. Find the general solution of .2 X ıı.; ~ of ~i (D+_-\) Ctt~~ ~ _ ~ 'D* d~ "J x > O. ~. ~,te> ) d - 's e L.i /;, + b e?·-t +s= ~ \ 'j ? dt alt1. -., d2y dy dx2 -6x +10y=3.T4+6x3, dx e vi i / e 5 i: b jp(+) "'- Ae 'it-+ B.e ~ d~f ... Y Ae lf{ + ~ ~e 1-LCL./:. - JLJe. _ 1& s-e ~f 1 -\-~g e + dfl- /GAe~\ _ 2... '31$ e3+ _ 2-1;" A-e L(~ _ 2~ I\,.e ,,+- 'i- A<> A"" ~+-le /c\l,..e 'ıL A e.tti---'2 \.-\ -Lf:::: - jHi:=. jet.}=: ':$ ~ f1<l.3t == Lt i: e. ,....3 ::i-n ~ ~t "" 1. '1 -e ı'{i- + 'ers+- A ~ - ~/L.. '" 1t- Q.. C, {1. ı.,ı:; ~ :=:> 's -+ Lı- e ., to _ .~ l( e, x -+ ~ x - 2. x - ~ x '3 e. t; ~ ::z. '>, €.- 3f- 7, eVi -le {; e rs =ı.. - ~ sf- '." Question 4. a) Given that Yı(x) = x is a solution of the following homogeneous equation (x 2 d2y + ı) -2 dx - dy 2x- da: + 2y = o find a second linearely independent solution. (",\.ü. (XıJl(+'LiJ-l) xLX~~>(J-'I -:).)( LX/f; rA y~ _~y&~o ~2.ıY-I , tJlf t tJ- 2.. =- o i ).cl w ~ ıY- ~C> x (x\o .2... ~) +- W :::..D :=<:> Jw -...• ve> 2... - X J)<. ()('\.t) X{N) aw --=w ( ~~ ')('l.-\.. 1\ _~) dx J Y\W ::.. ~V\(/:ij b) Use the method of variation of parameters to find a particular solution of , L X\A)1. _ G (x\'~) X~A - , (~\/O (L-~) ------ Uxl.._xL-t.A ~ - {, ()(~,{ ) ::::_'X'L-tb ':- c) Find a general solution of