Name: Spring 2011 11 June 2011 ME-210 Applied Math for ME Std ID: Final Examination Grade: Closed book and notes Show all your calculation steps. No calculators. Use the back side of the same sheet to continue solving a problem. Duration: 130 minutes USEFUL FORMULAS ab a ds d r ( t ) dt dt ab a b cos b sin e 1 dT(s) N(s) (s) ds d r (s) T(s) ds r ( t ) T( t ) r ( t ) B(s) T(s) N(s) dT(s) (s) N(s) ds dB(s) ds dN(s) (s)T(s) (s)B(s) ds (s) N(s) dT 1 dT ds v dt r ( t ) r ( t ) ( t ) r (t ) r (t )3 / 2 ds v T dt dB(s) (s) N(s) ds 1 (s) (s) r ( t ) r ( t ) r ( t ) ( t ) 2 r ( t ) r ( t ) ds 2 d 2s κ N a T dt dt 2 D b f b grad f grad f f f n f v v v div v v 1 2 3 x y z i j k x y z 2 2 x 2 f f f i j k x y z 2 y 2 2 z 2 v v v v v v curl v v 3 2 i 1 3 j 2 1 k z z x x y y div (v) 0 t curl (f ) 0 n If [C] [A][B] det([A]) n (1) j k k 1 c jk a jib ik then i 1 n det([A]) (1) j k a jk M jk a jk M jk j 1 where j 1, 2, ..., or n where k 1, 2, ..., or n [A] - 1 = xi = Di / D Adj[A] det[A] Adj[A] = [C i j ] T e i = cos + i sin (cos + i sin) n = cos(n) + i sin(n) [A] [x] = [x] 2k 2k z n r n cos i sin ,k = 0,1,2, … ,n -1 n n 1 ez = e(x 1 + iy ) = ex eiy ln(z) = ln |z| + i arg(z) cosh(z) = ( e z + e – z ) / 2 sinh(z) = ( e z – e – z ) / 2 cos(z) = ( e i z + e – i z ) / 2 sin(z) = ( e i z – e – i z ) / 2i df f (z o z) f (z o ) lim dz z zo z0 z w = f(z) = f(x + iy) = u(x,y) + i v(x,y) ux = vy df u x i vx dz z zo u y = -v x ∯( ⃗ ̂) ∬( ⃗ ̂) ∭( ∬[ ⃗ ( ( ∬⃗ ̂ ∫ ⃗ ( ⃗) ) ( ∬( ⃗ ⃗) )) ⃗⃗] ) ( ⃗) ̂ ∫ ⃗ ( ⃗( )) ⃗ z z0 QUESTION 1 (20 points) Find all the possible solutions for the following system of equations using Gauss Elimination and back substitution: 2w 3x 2y 7 3w y z 7 2x y z 1 SOLUTION Matrix representation of the system of equations: w 2 3 2 0 7 3 0 1 1 x 7 y 0 2 1 1 1 z The augmented matrix: 2 3 2 0 3 0 1 1 0 2 1 1 7 7 1 Gauss elimination: 1 2 * 2 2 3 1 3 2 3 2 0 0 9 4 2 0 2 1 1 7 7 1 2 3 2 0 0 9 4 2 0 0 1 5 7 1 7 2 5 3 * 9 3 2 2 Back substitution: y - 5 z = 5 => y = 5 + 5 z -9 x + 4 y - 2 z = -9 x + 20 + 20 z - 2 z = -9 x + 20 + 18 z = -7 => x = 3 + 2 z 2 w + 3 x - 2 y = 2 w + 9 + 6 z - 10 - 10 z = 2 w - 1 - 4 z = 7 => w = 4 + 2 z 4 2 5 5 All possible solutions: + z , where z is arbitrary. 3 2 0 1 QUESTION 2 (20 points) Find the eigenvalues and eigenvectors of 1 0 0 M 1 0 1 . 1 1 0 Check your results by multiplying [M] with the eigenvectors you found. SOLUTION Characteristic polynomial: 1 0 0 M I 1 1 1 2 1 0 1 1 Eigenvalues: 1 2 1 0 1,2 1 , 3 1. Eigenvectors corresponding to eigenvalue 1,2 1 : 1 1 0 0 x1 0 1 1 x 2 0 1 1 1 x3 3 0 x1 x2 1 x3 1 M 1I 1 c1 c2 1 1 c2 0 1 x1 1 x2 1 x3 1 0 x 1 c1 c1 1 c2 0 , where c1 and c2 are arbitrary. 1 0 0 c1+c2 c1+c2 Check: 1 0 -1 c1 = c1 1 -1 0 c2 c2 Eigenvectors corresponding to eigenvalue 3 1 : 1 1 0 0 x1 0 x13 0 M 1I 1 1 1 x2 0 x2 3 x3 3 1 1 1 x3 3 0 0 0 x 3 c3 c3 1 , where c3 is arbitrary. c3 1 1 0 0 0 0 Check: 1 0 -1 c3 = -c3 = 1 -1 0 c3 -c3 0 c 3 c3 QUESTION 3 (10+10 points) a) Evaluate sin i and express the result in Cartesian form, i.e., find the real and imaginary parts. 2i b) Find (all possible values for) z when zz z 1 i . SOLUTION sin π - i ei π-i - e-i π-i e1+iπ - e-1-iπ e1 cos π + i sin π - e-1 cos -π + i sin-π = = = 2+i 2 i 2 + i 2 -1 + i 2 2 -1 + i 2 a) = - e + e-1 - e + e-1 -1 - i 2 e - e-1 1 + i 2 e2 - 1 e2 - 1 = = = + i -1 + i 2 -1 - i 2 2 -1 + i 2 2 2 1 + 22 10 e 5e b) Let z = x + iy z z + z = x + i y x - i y + x + i y = x2 + y2 + x + i y = 1 + i . Real part: x2 y2 x 1 2 x 1 x 1 Imaginary part: y 1 x2 x x x 1 0 x 0 or x 1 Roots: z1 i , z2 1 i QUESTION 4 (10×2 points) Let f x,y,z = x2 - y z and v x,y,z v1 x,y,z i v2 x,y,z j v3 x,y,z k x2 i y z j . State whether the following expressions make sense and evaluate them if possible: a) f b) f d) v c) f e) v f) v g) f h) f i) v SOLUTION a) f f f f i j k 2 x i z j y k. x y z b) f : Divergence of a scalar function is not defined. c) f : Curl of a scalar function is not defined. d) v : Gradient of a vector function is not defined. e) v v1 v2 v3 2 f f x y z 0 2 x z . x y z x y z v v v v v v f) v 3 2 i 1 3 j 2 1 k . z x y z x y 0 yz i x2 0 j yz x2 k y i . z x y z y x j g) f i x y z k 2 x i z j y k 2x z y 2 . x y z h) f 0 , because curl of the gradient of a scalar function is always zero. i) v : v 2 x z is a scalar function and curl of a scalar function is not defined. j j) v i y z x k y i y 0 . x j) v QUESTION 5 (20 points) Evaluate 1 x dA , where the surface S is the cylinder x 2 + y2 = 1 between z = 0 and z = 1 + x. S Hint: Let x = cos(θ), and find the parametric representation of the surface S as r ,z dA r r dz d z SOLUTION Let x cos y 1 x2 sin . Then, a parametrization for S is: r ,z cos i sin j z k . r r sin i cos j , k z 1 x dA S 2 1 cos 0 2 0 i j k r r sin cos 0 cos i sin j cos2 sin2 1 z 0 0 1 2 2 1 cos r r dz d 1 cos 2 d 1 2cos cos2 d z 0 0 2 cos2 1 sin2 3 0 1 2 cos 2 d 2 2 sin 4 0 3