APN mappings over GF(2,6) Zülfükar Saygı TOBB ETU Haziran Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 1 / 27 subject of the talk A brief description of the classification of the APN cubics in 6 variables that is a joint work with Elif Saygı, Philippe Langevin. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 2 / 27 subject of the talk A brief description of the classification of the APN cubics in 6 variables that is a joint work with Elif Saygı, Philippe Langevin. The details of this 2011/12 computational project are available : langevin.univ-tln.fr/project This talk is presented by Philippe Langevin in YACC 12, September 24 – September 28, 2012, Porquerolles Island, France Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 2 / 27 definition m a positive integer, F2 finite field of order 2. m f : Fm 2 → F2 ( u Nf (u, v ) := # v Zülfükar Saygı (TOBB ETU) = x + y; = f (x) + f (y ). APN mappings over GF(2,6) Haziran 3 / 27 definition m a positive integer, F2 finite field of order 2. m f : Fm 2 → F2 ( u Nf (u, v ) := # v = x + y; = f (x) + f (y ). u 6= 0 =⇒ Nf (u, v ) = 0 or 2 [APN] almost perfect non-linear. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 3 / 27 cube map Fm 2 additive structure of F2m (q = 2m ) f : x 7→ x 3 = x 2 x Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 4 / 27 cube map Fm 2 additive structure of F2m (q = 2m ) f : x 7→ x 3 = x 2 x f (x + u) + f (x) = (x + u)3 + x 3 = ux 2 + u 2 x + u 3 Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 4 / 27 cube map Fm 2 additive structure of F2m (q = 2m ) f : x 7→ x 3 = x 2 x f (x + u) + f (x) = (x + u)3 + x 3 = ux 2 + u 2 x + u 3 As a vectorial function, the cube map is quadratic ! Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 4 / 27 affine equivalence Let A, B, C three affine transformations of Fm 2 . If A, B are permutations then f is APN ⇐⇒ A ◦ f ◦ B + C is APN notation : aff f ∼g same definition for (m, n) − mappings Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 5 / 27 flat characterization [APN] ( x +y +z +t =0 all distinct Zülfükar Saygı (TOBB ETU) =⇒ f (x) + f (y ) + f (z) + f (t) 6= 0 APN mappings over GF(2,6) Haziran 6 / 27 code characterization 1 ... 1 ... 1 ... 1 Hf = 0 . . . x f (0) . . . f (x) . . . f (1) [APN] the minimal distance of code(f ) is greater than 4. (The code is double-error-correcting (no fewer than 5 cols sum to 0).) Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 7 / 27 ccz-equivalence In particular, if code(f ) ∼ code(g ) then one denotes ccz f ∼g same definition for (m, n) − mappings Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 8 / 27 ccz-quadraticity There are some constructions of APN mappings, mainly : quadratic power mappings : Gold, Kasami, . . . In dimension 6, all of these are ccz-equivalent to a quadratic mapping ! ? Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 9 / 27 ccz-quadraticity [2009] Dillon discovered an APN permutation of F62 , it is ccz-quadratic. The only known example in even dimension. [2009] Edel and Pott discovered a nice cubic APN in dimension 6 wich is not ccz-quadratic. The only example in dimension 6. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 10 / 27 small dimensions All the APNs are known, for m= 1, 2, 3, 4, 5 : [m=4] 1 ccz-class, 2 affine class. [m=5] 3 ccz-class, 7 affine class. [2007] Brinkmann and Leander computed the ccz-classification of maps in dimension 5. two weeks of computation ! Our approach enable us to ccz-classify the APN maps in less than two hours. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 11 / 27 open numerical questions 12 + 1 + 1 ccz-class of APNs are known. APNs is a small set in a huge space . . . is it possible to ccz-classify of all APN in dimension 6 ? Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 12 / 27 open numerical questions 12 + 1 + 1 ccz-class of APNs are known. APNs is a small set in a huge space . . . is it possible to ccz-classify of all APN in dimension 6 ? It looks hard ! affine classification of all APN cubics in dimension 6 ? Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 12 / 27 open numerical questions 12 + 1 + 1 ccz-class of APNs are known. APNs is a small set in a huge space . . . is it possible to ccz-classify of all APN in dimension 6 ? It looks hard ! affine classification of all APN cubics in dimension 6 ? Indeed, it is feasible. We find a way that runs in about two months. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 12 / 27 ambient spaces dim Boolean cubics = 1 + 6 + 15 + 20 = 7 + 35 The space of vectorial cubics 42 ∗ 6 = 252 For APN, we do not care about linear terms 35 ∗ 6 = 210 In general, 4 components are enough 35 ∗ 4 = 140 Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 13 / 27 terminology An affine classification of the set of APNs is a set X such that ∀f ∈ apn(m), ∃!g ∈ X , aff g ∼ f. A covering at level n, is a set of (m, n)-maps Y such that : ∀f ∈ apn(m), ∃g ∈ Y , ∃h, aff (g , h) ∼ f . It is convenient to reduce covering sets ! We need to test affine equivalence of (m, n)-mappings. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 14 / 27 classification steps Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 15 / 27 Boolean cubics The first important step is to classify the Boolean cubics in dimension 6 under the action of the affine group agl(6) : 34 class dimension 35 We use computational algebra methods to keep in memory : representative orbit size fixator group Note that we plan to use about 32 Gb of shared memory Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 16 / 27 coordinate, component space n Consider (m, n)-mappings i.e. Fm 2 7→ F2 f = (f1 , f2 , . . . , fn ) where fi are Boolean functions. ∀λ ∈ Fn2 , def fλ = n X λi fi i=1 component space : vect(f ) = hf1 , f2 , . . . , fn i [APN] a m-space on which the “affine” characters are not trivial. f 7→ χ(f ) = µ(f (x) + f (y ) + f (z) + f (t)) Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 17 / 27 invariants invariant : [class(s) | s ∈ vect(f )]sorted representative : In order to construct a “canonical” representative, we select the type of cubic that appears in vect(f ) that minimizes ]fix(s). Then it is possible to deduce the smallest value of [vect(g )]sorted aff where r ∈ vect(g ) and g ∼ f . Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 18 / 27 Walsh coefficients Let f be a Boolean function. X X b f (a) = (−1)f (x)+a.x = (−1)f (x) µa (x) x∈Fm 2 Zülfükar Saygı (TOBB ETU) x∈Fm 2 APN mappings over GF(2,6) Haziran 19 / 27 Walsh coefficients Let f be a Boolean function. X X b f (a) = (−1)f (x)+a.x = (−1)f (x) µa (x) x∈Fm 2 Nf (u, v ) = x∈Fm 2 1 XXb 2 fλ (a) µa (u)µb (v ) 22m a∈Fm λ∈Fn 2 Zülfükar Saygı (TOBB ETU) 2 APN mappings over GF(2,6) Haziran 19 / 27 Walsh moment [APN] X fbλ (a)4 = 2q 3 (q − 1), (1) def b f (a)4 , L(bent) = q 3 , L(f ) = α(f )q 3 . X L(fλ ) = 2q 3 (q − 1), (2) a,06=λ∈Fm 2 L(f ) = P a∈Fm 2 06=λ∈Fm 2 It exists a component such that L(fλ ) ≤ 2q 3 , Zülfükar Saygı (TOBB ETU) i.e. α(fλ ) ≤ 2 APN mappings over GF(2,6) (3) Haziran 20 / 27 classification of Boolean cubics Type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ANF of Representative ace + bce + bde + bcf + adf ab + ace + bce + bde + bcf + adf ab + cd + ace + bce + bde + bcf + adf cde + abf ac + cde + abf bc + ad + cde + abf bd + ae + cde + abf + cf bcd + ace + abf ad + bcd + ace + abf ad + bcd + be + ace + abf bd + cd + bcd + ce + ace + abf bcd + ace + de + abf ad + bd + cd + bcd + be + ce + ace + abf + cf bcd + ace + de + abf + cf acd + abe bc + acd + abe cd + acd + abe Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) α 3, 8125 3, 0625 2, 3125 7, 5625 4, 5625 3, 0625 2, 3125 5, 5 4 2, 5 4 3, 25 1 2, 5 11, 5 5, 5 7 Haziran 21 / 27 classification of Boolean cubics Type 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ANF of Representative bd + cd + acd + abe + ce acd + abe + af bc + acd + abe + af cd + acd + abe + af bd + cd + acd + abe + ce + af acd + abe + bf acd + abe + ce + bf abc abc + ad abc + bd + ae abc + de abc + cd + be + af abc + de + af 0 ab bc + ad cd + be + af Zülfükar Saygı (TOBB ETU) α 4 8, 5 2, 5 4 1 4 2, 5 22 10 4 5, 5 1 2, 5 64 16 4 1 APN mappings over GF(2,6) Haziran 22 / 27 extension Given a candidate at level n, g = (g1 , g2 , . . . , gn , hn+1 , . . . , hm ) We denote by S = hg1 , g2 , . . . , gn i and V = hhn+1 , . . . , hm i X L(t, S) = L(h). 06=h∈t+S Assuming (g , h) is an APN-extension X L(t, S) = 2q 3 (q − 1), t∈V It exists t such that L(t, S) ≤ Zülfükar Saygı (TOBB ETU) 2q 3 − L(0, S) 2m−n − 1 APN mappings over GF(2,6) Haziran 23 / 27 extension It exists t s. t. L(t, S) ≤ 2q 3 − L(0, S) 2m−n − 1 (4) But, in fact : t + S contains a bent function ! For all g at level n, we select all the bent functions t satisfying (4). Indeed the set of bent functions is rather small. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 24 / 27 backtracking Given an (m, n)-mapping g . can we extend g as an APN ? Does there exist a (m, m − n)-mapping such that : g (x) + g (y ) + g (z) + g (t) = 0 =⇒ h(x) + h(y ) + h(z) + h(t) 6= 0? We use backtracking to solve it. It works well for (5, 3) and (6, 4) mappings. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 25 / 27 dancing links Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 26 / 27 output At the end, we get 534 affine class of APN cubics 14 ccz-class Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 27 / 27