MT 382 LATEKS ARA SINAVI ÇÖZÜMLER 1 latin5 (veya utf8) 11 \right) 2 \begin 12 array 3 \item 13 \mathbb 4 \frac 14 n=1 5 $ 15 { 6 \\ 16 \ 7 \right. 17 \in 8 enumerate 18 \] 9 \infty 19 ` 10 \pi 20 & ——————————————————-LATEXDosyası——————————————————\documentclass[11pt,a4paper]{article}\usepackage[ 1 ]{inputenc} \usepackage{amsmath} 2 {center} SORULAR \end{center} \begin{enumerate} 3 $f(x)=e^{x^2} \textrm{ ise } 4 {df}{dx}=2 x e^{x^2} $ olur. \item 5 \left\lbrace \begin{array}{ccc} a & b & E 6 c & d & F \end{array} 7 $ \end{ 8 } \[ \textrm{Euler’ in Formülü:}\qquad \sum_{n=1}^{ 9 }\frac{1}{n^2}=\frac{ 10 ^{2}}{6} \] \[ \lim_{x\to \infty}\left(1+\frac{1}{x} 11 ^x=e \] \[ \lfloor x \rfloor = \left\lbrace \begin{ 12 }{ll} x & x\in 13 {Z}\ \mathrm{ise} \\ n & n<x<n+1\ \mathrm{ise} \end{array}\right. ,\quad \zeta(s)=\sum_{ 14 }^\infty\frac1{n^s}\quad(s\in\mathbb{C},\ \Re s>1) \text{ (Riemann’ ın zeta fonksiyonu)} \] \[ \textrm 15 D-I. H. T. T. (I. Şekli):}\quad f, 16 [a,b] \textrm{ aralığında sürekli ve her } x 17 [a,b] \textrm{ için } F’(x)=f(x) \textrm{ ise } \int_{a}^{b}f(t)\, dt= F(b)-F(a) \textrm{ olur.} 18 \begin{center} \begin{tabular}{| 19 |c|r|} \hline Ali & Ayşe & Deniz \\ \hline MTS 382 \LaTeX 20 MT 242 Analiz 4 & MT 132 Analiz II\\ \hline \end{tabular}\end{center} \end{document} —————————————————————- Pdf Çıktısı—————————————————– SORULAR 2 1. f (x) = ex ise a b E 2. c d F df dx 2 = 2xex olur. ∞ X 1 π2 = n2 6 Euler’ in Formülü: n=1 lim x→∞ bxc = x x ∈ Z ise , n n < x < n + 1 ise D-I. H. T. T. (I. Şekli): 1+ 1 x x =e ∞ X 1 ζ(s) = ns (s ∈ C, <s > 1) (Riemann’ ın zeta fonksiyonu) Z b f, [a, b] aralığında sürekli ve her x ∈ [a, b] için F 0 (x) = f (x) ise f (t) dt = F (b)−F (a) olur. n=1 a Ali MTS 382 LATEX Ayşe MT 242 Analiz 4 Deniz MT 132 Analiz II