MT 382 LATEKS ARA SINAVI C¸ ¨OZ¨UMLER 1 2 3 4 5 6 7 8 9 10

advertisement
MT 382 LATEKS ARA SINAVI ÇÖZÜMLER
1
latin5 (veya utf8)
11
\right)
2
\begin
12
array
3
\item
13
\mathbb
4
\frac
14
n=1
5
$
15
{
6
\\
16
\
7
\right.
17
\in
8
enumerate
18
\]
9
\infty
19
`
10
\pi
20
&
——————————————————-LATEXDosyası——————————————————\documentclass[11pt,a4paper]{article}\usepackage[ 1 ]{inputenc} \usepackage{amsmath}
2 {center} SORULAR \end{center}
\begin{enumerate}
3 $f(x)=e^{x^2} \textrm{ ise } 4 {df}{dx}=2 x e^{x^2} $ olur.
\item 5 \left\lbrace \begin{array}{ccc}
a & b & E 6
c & d & F
\end{array} 7 $
\end{ 8 }
\[ \textrm{Euler’ in Formülü:}\qquad \sum_{n=1}^{ 9 }\frac{1}{n^2}=\frac{ 10 ^{2}}{6} \]
\[ \lim_{x\to \infty}\left(1+\frac{1}{x} 11 ^x=e \]
\[ \lfloor x \rfloor = \left\lbrace \begin{ 12 }{ll}
x & x\in 13 {Z}\ \mathrm{ise} \\
n & n<x<n+1\ \mathrm{ise}
\end{array}\right. ,\quad \zeta(s)=\sum_{ 14 }^\infty\frac1{n^s}\quad(s\in\mathbb{C},\ \Re s>1)
\text{ (Riemann’ ın zeta fonksiyonu)} \]
\[ \textrm 15 D-I. H. T. T. (I. Şekli):}\quad f, 16 [a,b] \textrm{ aralığında sürekli ve her }
x 17 [a,b] \textrm{ için } F’(x)=f(x) \textrm{ ise } \int_{a}^{b}f(t)\, dt= F(b)-F(a)
\textrm{ olur.} 18
\begin{center}
\begin{tabular}{| 19 |c|r|}
\hline Ali & Ayşe & Deniz \\
\hline MTS 382 \LaTeX 20 MT 242 Analiz 4 & MT 132 Analiz II\\
\hline
\end{tabular}\end{center} \end{document}
—————————————————————- Pdf Çıktısı—————————————————–
SORULAR
2
1. f (x) = ex ise
a b E
2.
c d F
df
dx
2
= 2xex olur.
∞
X
1
π2
=
n2
6
Euler’ in Formülü:
n=1
lim
x→∞
bxc =
x x ∈ Z ise
,
n n < x < n + 1 ise
D-I. H. T. T. (I. Şekli):
1+
1
x
x
=e
∞
X
1
ζ(s) =
ns
(s ∈ C, <s > 1) (Riemann’ ın zeta fonksiyonu)
Z b
f, [a, b] aralığında sürekli ve her x ∈ [a, b] için F 0 (x) = f (x) ise
f (t) dt = F (b)−F (a) olur.
n=1
a
Ali
MTS 382 LATEX
Ayşe
MT 242 Analiz 4
Deniz
MT 132 Analiz II
Download