131 2.7 Inverse Trigonometric and Hyperbolic Functions 1 1 + iz 1 3. arctan z = ln = arctanh(i z) 2i 1 − iz i iz − 1 1 ln = i arccoth(i z) 4. arccot z = 2i iz + 1 5. arcsinh z = ln(z + z 2 + 1) = 1 arcsin(i z) i 6. arccosh z = ln(z + z 2 − 1) = i arccos z 1+z 1 1 = arctan(i z) 7. arctanh z = ln 2 1−z i z+1 1 1 = arccot(−i z) 8. arccoth z = ln 2 z−1 i 2.7.2.3 Relationships between different inverse trigonometric functions. π 1. arcsin x + arccos x = 2 π 2. arctg x + arcctg x = 2 2.7.2.4 1. arcsin x = arccos 1 − x 2 = − arccos 1 − x 2 [0 ≤ x ≤ 1] [−1 ≤ x ≤ 0] x [x 2 < 1] 2. arcsin x = arctan √ 1 − x2 √ 1 − x2 [0 < x ≤ 1] 3. arcsin x = arccot x √ 1 − x2 −π [−1 ≤ x < 0] = arccot x [0 ≤ x ≤ 1] 4. arccos x = arcsin 1 − x 2 2 [−1 ≤ x ≤ 0] = π − arcsin 1 − x √ 1 − x2 [0 < x ≤ 1] 5. arccos x = arctan x √ 1 − x2 [−1 ≤ x < 0] = π + arccot x x 6. arccos x = arccot √ 1 − x2 [−1 ≤ x < 1]