MasColell Ders Notları Murat Donduran February 20, 2009 Contents 1 İşbirliksiz Oyunların Temel Elemanları 1.1 Oyun Nedir? . . . . . . . . . . . . . . . . . . . . . . 1.2 Genişleyen Biçimde Oyunlar . . . . . . . . . . . . . 1.3 Stratejiler ve Bir Oyunun Normal Biçimde Sunumu 1.4 Rastlantısallaşmış Seçimler . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 3 7 9 Chapter 1 İşbirliksiz Oyunların Temel Elemanları 1.1 Oyun Nedir? Bir oyun, stratejik bir birbirine bağımlılık ilişkisi içinde çeşitli sayıda bireylerin durumlarının formal sunumudur. Kısacası, herbir bireyin rafaha sadece kendi eylemine değil aynı zamanda diğer bireylerin eylemlerine de bağlıdır. Bundan başka, kendisi için en iyi olan eylem diğer bireylerin ne yapacaklarının beklentisinde de bağlıdır. Stratejik etkileşim durumunu tanımlamak için, dört şey gereklidir; 1. Oyuncular : Kimler oyunu oynamaktadır? 2. Kurallar : Kim ne zaman oynamaktadır? Hareket ederlerken ne bilmektedirler? Ne yapabilirler? 3. Çıktılar : Oyuncular tarafından gerçekleştirilen eylemlerin olanaklı her kümesi için, oyunun çıktısı nedir? 4. Ödemeler : Olanaklı çıktılar üzerinde oyuncuların tercihleri (örneğin fayda fonksiyonları) nedir? Aşağıdaki örnek bir oyunun ilk üç öğesini göstermektedir. Örnek 1.1 (Eşleşen Paralar). . 1. Oyuncular: İki oyuncu vardır. 1 ve 2 ile gösterilmektedir. 2. Kurallar: Her iki oyuncu aynı anda havaya iki tane bozuk para atmaktadır. Ya yazı gelecek ya da tura gelecektir. 3. Çıktılar: İki para eşleşirse, 1. oyuncu 2. oyuncuya 1 lira eşleşmezse 2. oyuncu 1. oyuncuya 1 lira ödemektedir. 2 Bu örnekteki oyunu tamamlamak için, olanaklı çıktılar üzerinde oyuncuların tercihlerinin ne olduğunu belirtmek gerekmektedir. Kısacası, tanımdaki dördüncü öğe tamamlanmalıdır. Genel olarak, oyuncunun tercihi fayda fonksiyonları tarafından belirlenmektedir ve her olanaklı çıktı için fayda seviyesi atanmaktadır. Oyuncunun fayda fonksiyonuna ödeme fonksiyonu denmekte ve fayda seviyesi de ödeme olarak adlandırılmaktadır. Analiz boyunca fayda fonksiyonları beklenen fayda biçiminde olacaktır. Her oyuncunun ödemesini basit şekilde elde ettiği yada kaybettiği para miktarına eşitleyerek dördüncü öğe oluşturulabilir. Bu noktada oyuncuların ödemelerini maksimize eden eylemler rakibinin ne yaptığı beklentisine bağlıdır. Örnek 1.2 (New York’ta Buluşma). . 1. Oyuncular: İki oyuncu, Ali ile Veli vardır. 2. Kurallar: Her iki oyuncu da ayrıdır ve iletişim içinde değildir. Öğle yemeği için New York’ta buluşacaklardır ancak nerede buluşacaklarını unutmuşlardır. Herbiri nereye gideceğine karar vermek zorundadır ve sadece bir şeçim şansı vardır. 3. Çıktılar: Karşılaşırlarsa mutlu olacaklardır. Buluşamazlarsa yemeği yanlız yiyeceklerdir. 4. Ödemeler: Karşılaşırlarsa ödeme 100, ayrı ayrı kalırlarsa 0 birimdir. Bu örnekte, iki oyuncunun çıkarları bağlantılıdır. Problemleri basitçe koordinasyondur. Yine de, her oyuncunun ödemesi diğer oyuncunun ne yaptığına bağlıdır ve daha da önemlisi, her oyuncunun optimal eylemi diğerinin ne yapacağını düşünmesine bağlıdır. Böylece, kordinasyon görevi bile stratejik bir önem kazanmaktadır. 1.2 Genişleyen Biçimde Oyunlar Yukarıda tanımlanan dört öğe biliniyorsa, oyun genişleyen biçimde gösterilebilir. Genişleyen biçim kim ne zaman hareket edecek, her oyuncu hangi eylemleri gerçekleştirecek, hareket ettiklerini oyuncular neleri bilmektedir, oyuncular tarafından gerçekleştirilen eylemlerin bir fonksiyonu olarak çıktılar nelerdir, ve her olanaklı çıktıdan elde edilen ödemeler nelerdir gibi soruların cevaplarını kapsamaktadır. Genişleyen biçim oyun ağacı olarak bilinen kavramsal araca dayanmaktadır. Basit bir örnekle başlamak kolaylık sağlayacaktır. Örnek 1.3 (Eşleşen Paralar Versiyon B ve Genişleyen Biçimi). . Bu versiyon ilk versiyona özdeştir. Sadece iki oyuncu ardışık hareket etmektedir. İlk verisyonda eş-anlı olarak hareket etmektedirler. Önce birinci oyuncu parası çevirmekte daha sonra ikinci oyuncu birinci oyuncunun seçimini gördükten sonra parasını çevirmektedir (Bu 2. oyuncu için gerçekten çok güzel bir oyundur). 3 Bu oyunun genişleyen biçimdeki sunumu şekil (1.1)’de gösterilmektedir. Oyun başlangıç karar noktasında başlamaktadır (Açık daire ile gösterilmiştir). 1. oyuncunun hareketini yaptığı yerdir. Yazı mı Tura mı kararını verecektir. 1. oyuncu için her iki olanaklı seçim bu başlangıç karar noktasından çizilen yollarla gösterilmektedir. Her yolun sonunda bir başka karar noktası vardır. Buralarda 2. oyuncu 1. oyuncunun seçimini gördükten sonra iki eylem arasından birini seçecektir. 2. oyuncu hareket ettikten sonra oyun sona erecektir. Varılan noktalara terminal noktalar denmektedir. Her terminal noktada oyuncuların ödemeleri sırasıyla gösterilmektedir. 1.Oyuncu b Yazı H 2.Oyuncu r Yazı @ Tura r −1, 1 @ @r 1, −1 HHTura H HHr2.Oyuncu Yazı @ Tura @ @r r 1, −1 −1, 1 Figure 1.1: Eşleşen Paralar Versiyon B için Genişleyen Biçim Örnek 1.4 (Eşleşen Paralar Versiyon C ve Genişleyen Biçimi). . Bu versiyon versiyon B’ye özdeştir. Farklılık 1. oyuncu kararını verdiğinde parayı 2. oyuncuya göstermemektedir. 2. oyuncu hareket etmeden önce 1. oyuncunun seçimi görememektedir. 1.Oyuncu b H Tura Yazı HH 2.Oyuncu r p p p p p p p p p p p p p p p p p pH pH p r @ Tura Yazı @ Tura H Yazı r 1, 0 @ @r r 2, 3 0, 1 @ @r −1, 0 Figure 1.2: Eşleşen Paralar Versiyon C için Genişleyen Biçim Bu oyun şekil (1.2)’de gösterilmektedir. Şekil (1.1)’e özdeş sadece 2. oyuncunun karar noktalarının arasına kesikli çizgi çizilmiştir. Bu çizginin anlamı iki karar noktasının tek bir enformasyon kümesinde olduğunu belirtmesidir. Bu enformasyon kümesinin anlamı kısaca şudur; 2. oyuncu hareket edeceği zaman 1. oyuncunun kararını göremediğinden hangi karar noktasında olduğunu bilemez. 2. oyuncunun enformasyon kümesindeki iki her iki noktadada aynı olanaklı eylemler vardır. 2. oyuncu iki nokta arasında ayrım yapamaz. Prensipte, 1. oyuncunun karar noktasının da bir enformasyon kümesi vardır. Çünkü 1. oyuncuda hareket etmeden önce hiçbir şeyin olmadığını bilmektedir. Bu enformasyon kümesinin bir elemanı vardır (1. oyuncu hareket ettiğinde hangi noktada olduğunu tam olarak bilmektedir). Kabaca, şekil (1.2)’de de 1. oyuncu için bir enformasyon kümesi belirtilebilir. Ancak, grafiksel gösterimi basitleştirmek amacıyla bu gösterim kullanılmamaktadır. Bundan dolayı, kesikli çizgilerin olmadığı karar noktalarında enformasyon kümeleri tekildir (singleton). 4 Bir oyuncunun bütün enformasyon kümelerinin listesi oyuncunun perspektifinden hareketi hakkında ”olayları” ve ”durumları” ayırabilmesinin listesini vermektedir. Örneğin, örnek (1.1)’de 2. oyuncunun perspektifinden, olabilecek iki ayrılabilir olay vardır. Bunlar iki tekil enformasyon kümesinden oluşmaktadır. Ancak, örnek (1.4)’de 2. oyuncunun sadece olanaklı bir tane durumu vardır. Örnek (1.4)’de, enformasyon kümeleri üzerine doğal bir kısıtlama konmaktadır: veri bir enformasyon kümesi içindeki her noktada, oyuncunun olanaklı eylemlerinin benzer bir kümesi olmak zorundadır. Diğer kısıtlama mükemmel hatırlama (perfect recall) olarak bilinmektedir. Mükemmel hatırlama oyuncunun bir kere öğrendiğini bir daha unutmaması durumudur. 1.Oyuncu b 2.Oyuncu r l PP PP r PP 2.Oyuncu PP Pr A A A A A A AR AR L L A A A A A A A A 1.Oyuncu pr p p p p p p p p p p p p p pArp p p p p p p p p p p p p p p rp p p p p p p p p p p p p p pAr A A A A A y A y A y A y x x x x A A A A A A A A A A A A r Ar Ar Ar Ar r r r Figure 1.3: Mükemmel Hatırlamayı Sağlamayan Bir Oyun Ağacı Şekil (1.3)’de, 1. oyuncu önceki hareketini unutmaktadır. Aksi belirtilmedikçe bütün oyunlar mükemmel hatırlama altında oynanacaktır. Enformayon kümelerinin kullanımı eş-anlı yerine ardışık oyunlara izin vermektedir. Böylelikle örnek (1.1) de oyun ağacı ile gösterilebilir. Bu bağlamda kusursuz enformasyonlu oyunun tanımı yapılabilir. Tanım 1.1. Her enformasyon kümesi sadece tek bir karar noktasını içeriyorsa bu oyun kusursuz enformasyonlu bir oyundur. Aksi takdirde, oyun kusurlu enformasyonludur. Örnek 1.5 (Eşleşen Paralar Versiyon D ve Genişleyen Biçimi). . Oyuncular oyunun B versiyonunu oynamadan önce, iki oyuncu biz bozuk para atarak oyuna kimin başlayacağına karar vermektedirler. Böylece, 1. ve 2. oyuncu için parayı ilk kullanacak oyuncuyu seçmede eşit olasılık olacaktır. Şekil (1.4)’de bu oyun doğanın oyuna başlaması ile gösterilmektedir. Doğa oyuna iki yola sahip olarak 12 olasılıkla kararını vermektedir. Doğa sabit olasılıklarla iki eylemi 5 Doğa b PPP 1 2 PP 1 2 1.Oyuncu r Y A A A 2.Oyuncu r A A Y AT A A Ar r -1,1 AT A A A A 2.Oyuncu Ar A A Y AT A A Ar r 1,-1 1,-1 PP 2.Oyuncu P Pr A A A AT Y A A A A 1.Oyuncu 1.Oyuncu Ar r A A A A Y Y AT AT A A A A Ar Ar r r -1,1 -1,1 1,-1 1,-1 -1,1 Figure 1.4: Eşleşen Paralar Versiyon D oynamak zorunda olan bir oyuncu olarak eklenmiştir. Şekilde (Y ) yazı, (T ) tura için kullanılmıştır. Grafiksel olarak gösterimine ek olarak, genişleyen biçim matematiksel olarak da tanımlanabilir. Formal olarak, genişleyen biçimdeki bir oyun aşağıda sıralanan maddelere sahiptir; 1. Noktaların sonlu kümesi X , olanaklı eylemlerin sonlu kümesi A ve oyuncuların sonlu kümesi {1, ..., I}. 2. Her x noktasının tek bir ara atasını belirten bir fonksiyon, p : X → {X ∪ ∅}, Başlangıç noktası x0 hariç, bütün x ∈ X için p(x) boş-olmayandır. x noktasının ara torun noktası o zaman s(x) = p−1 (x) olacaktır. x noktasının bütün ataları ve torunları kümesi p(x) ve s(x) yinelemesi ile bulunabilir. Bir ağaç yapısı olması için, ayrık kümeler olmak zorundadır (x noktasının atası torunu olamaz.) Terminal noktalar kümesi T = {x ∈ X : s(x) = ∅}. Diğer bütün noktaları X \ T karar noktalarıdır. 3. α : X \ {x0 } → A fonksiyonu başlangıç noktası olmayan bir x noktasına atasından p(x) bir eylemle gelmektedir ve x0 , x00 ∈ s(x) ve x0 6= x00 ise, α(x0 ) 6= α(x00 ) olan özelliği sağlamaktadır. x karar noktasında elverişli seçimler kümesi c(x) = {a ∈ A : Bazı x0 ∈ s(x) noktaları için a = α(x0 )} 4. Enformasyon kümeleri koleksiyonu, H ve H : X → H her x noktasını bir enformasyon kümesine H(x) ∈ H atayan fonksiyon. H koleksiyonundaki enformasyon kümeleri X kümesinin parçalanışı biçimindedir. Tekil enformasyon kümesine atanmış bütün karar noktalarında aynı seçimler elverişldir. Formal olarak, H(x) = H(x0 ) ise, c(x) = c(x0 ) geçerlidir. Bundan dolayı, H enformasyon kümesindeki elverişli seçimler C(H) = {a ∈ A : x ∈ H için a ∈ c(x)} şeklinde yazılmaktadır. 6 5. ι : H → {0, 1, ..., I} fonksiyonu, H koleksiyonundaki her enformasyon kümesini bu kümedeki karar noktasında hareket eden oyuncuya atamaktadır (ya da doğaya formal olarak 0. oyuncuya atamaktadır.) i. oyuncunun enformasyon kümeleri koleksiyonu Hi = {H ∈ H : i = ι(H)} şeklinde gösterilmektedir. 6. ρ : P H0 ×A → [0, 1] fonksiyonu doğanın hareket ettiği ve bütün H ∈ H0 için a ∈ / C(H) ve a∈C(H) ρ(H, a) = 1 ise, ρ(H, a) = 0 olan enformasyon kümelerinde eylemlere olasılık atamaktadır. 7. Ödeme fonksiyonları koleksiyonu, u = {u1 (.), u2 (.), ..., uI (.)}, ulaşılan her terminal noktada oyunculara fayda atamaktadır; ui : T → R. Böylece, yukarıdaki maddelerle genişleyen biçimde bir oyun tanımlanmaktadır; Γ = {X , A, I, p(.), α(.), H, H(.), ι(.), ρ(.), u} 1.3 Stratejiler ve Bir Oyunun Normal Biçimde Sunumu Oyun teorisinde merkezi kavram oyuncunun stratejisi nosyonudur. Strateji tam bir tesadüfi plan ya da karar kuralıdır ve hareket etmesi gereken her olanaklı ayrılabilir durumda nasıl hareket edeceğini belirten bir plan ya da kuraldır. Oyuncunun perspektifinden, böyle durumlar kümesi enformasyonkümelerinin koleksiyonu taraafından belirtilmektedir. Hareket etme ihtiyacı duyabileceği farklı ayrılabilir durumları belirten her enformasyon kümesine konu olmaktadır. Tanım 1.2. Hi ; i oyuncusunun enformasyon kümelerinin koleksiyonu, A oyundaki olanaklı eylemlerin kümesi, ve C(H) ⊂ A, H enformasyon kümesindeki olanaklı eylemlerin kümesi olsun. i oyuncusu için bir strateji, bütün H ∈ Hi için si (H) ∈ C(H) olan bir si : Hi → A fonksiyonudur. Tam bir tesadüfi plan olarak, strateji genellikle oyunun fiili oynanması sırasında ulaşılamayabilinecek enformasyon kümelerinde oyuncunun eylemlerini belirtmektedir. Örnek 1.6 (Eşleşen Paralar Versiyon B’de Stratejiler). . Eşleşen paraler versiyon B’de 1. oyuncu için strateji oyunun başlangıç noktasındaki hareketini belirtmektedir. İki olanaklı stratejisi vardır: yazı (Y) ya da tura (T) stratejilerini oynayabilir. Diğer taraftan, 2. oyuncu için strateji, her iki enformasyon kümesinde nasıl (Y yada T) oynayacağını belirtmektedir. Yani, 1. oyuncu Y oynarsa ve 1. oyuncu T oynarsa nasıl oynayacaktır? Böylece, 2. oyuncunun dört olanaklı stratejisi vardır; Strateji Strateji Strateji Strateji 1 2 3 4 (s1 ): (s2 ): (s3 ): (s4 ): 1. 1. 1. 1. oyuncu oyuncu oyuncu oyuncu Y Y T T oynarsa, oynarsa, oynarsa, oynarsa, Y Y Y Y oyna, oyna, oyna, oyna, 7 1. 1. 1. 1. oyuncu oyuncu oyuncu oyuncu Y oynarsa, T oyna. T oynarsa, T oyna. Y oynarsa, T oyna. T oynarsa, T oyna. Örnek 1.7 (Eşleşen Paralar Versiyon C’de Stratejiler). . Eşleşen paralar oyununun C versiyonunda, 1. oyuncunun stratejileri versiyon B’deki ile aynıdır. Fakat 2. oyuncunun sadece iki olanaklı stratejisi vardır. ”Y” ya da ”T” oynamak, çünkü sadece bir tane enformasyon kümesi vardır. I-oyunculu bir oyunda oyuncuların strateji seçimlerinin profilini s = (s1 , ..., sI ) vektörü ile göstermek uygundur. si , i. oyuncunun seçilen stratejisi belirtmektedir. Kısaca yazmak için, bazen s strateji profili (si , s−i ) şeklinde gösterilecektir. s−i , i. oyuncu dışındaki oyuncuların (I − 1) boyutundaki strateji vektörüdür. Oyuncuları için stratejilerin her profili s = (s1 , ..., sI ), oyunun çıktısına neden olmaktadır. Böylece, herhangi bir strateji profili için, s = (s1 , ..., sI ), her oyuncu tarafından elde edilen ödemeler ortaya çıkacaktır. Bundan dolayı, oyun direk olarak stratejiler ve ilgili ödemeleri ile belirlenebilir. Bir oyunun sunmanın ikinci yolu normal (ya da stratejik) biçim olarak bilinen yöntemle olacaktır. Bu genişleyen biçimdeki bir oyunun kısaltılmış halidir. Tanım 1.3. I oyuncu ile bir oyun için, ΓN normal biçim sunumu her i oyuncusu için stratejiler kümesi Si (si ∈ Si ile) ve ui (s1 , ..., sI ) ödeme fonksiyonu ile belirtilmektedir. ui (s1 , ..., sI ), (s1 , ..., sI ) stratejilerinden ortaya çıkan (muhtemelen rastlantısal) çıktılar ile ilgili von Neumann-Morgenstern fayda seviyelerini vermektedir. Formal olarak, ΓN = [I, {Si }, {ui (.)}] şeklinde yazılmaktadır. Gerçekte, normal biçimde bir oyunu tanımlarken, her strateji için spesifik hareketlerin kaydını tutmaya ihtiyaç yoktur. Oyuncunun çeşitli olanaklı stratejilerini i. oyuncunun strateji kümesi Si = (s1i , s2i , ...) şeklinde yazarak basitçe sayılabilir ve her strateji numarası ile ifade edilebilir. Örnek 1.8 (Eşleşen Paralar Versiyon B’nin Normal Biçimi). . Örnek (1.6)’de iki oyuncunun strateji kümeleri tanımlanmıştır. Ödeme fonksiyonları aşağıdaki şekildedir; ( +1, (s1 , s2 ) = (H, 3 ya da 4 stratejileri) yada (T, 1 ya da 3 stratejileri) ise u1 (s1 , s2 ) = −1, (s1 , s2 ) = (H, 1 ya da 2 stratejileri) yada (T, 2 ya da 4 stratejileri) ise ve u2 (s1 , s2 ) = −u1 (s1 , s2 ). Bu bilgileri şekil (1.5)’de özetlemek olanaklıdır. Her bir hücrede, iki oyuncunun ödemeleri u1 (s1 , s2 , u2 (s1 , s2 ) olarak gösterilmiştir. 8 1. Oyuncu s1 −1, +1 +1, −1 Y T 2. Oyuncu s2 s3 −1, +1 +1, −1 −1, +1 +1, −1 s4 +1, −1 −1, +1 Figure 1.5: Eşleşen Paralar Versiyon B Normal Biçimi 2.Oyuncu b P @ PPP PP @ PP d a b c PP @ PP @ P 1. Oyuncu @p rp p p p p p p p p p p p p pPp P p p p p p p p p p p p p p p p p p p rp p p p p p p p p p p p p p p p p p p @ p pP p pP p r rp p @ R L @ R L @ R L @ R @ @ @ @ @r @r @r @r r r r L r −1, +1 +1, −1 −1, +1 −1, +1 +1, −1 +1, −1 +1, −1 −1, +1 Figure 1.6: Yukarıdaki Normal Biçimin Genişleyen Biçimi Yukarıdaki normal biçimdeki oyun şekil (1.6)’de genişleyen biçimde gösterilmektedir. Oyundaki davranışları incelemek için normal biçim sunumunu kullanmaktaki mantık, oyuncunun karar problemini rakibinin benimseyeceğini düşündüğü stratejileri veri kabul ederek stratejisini seçmesi olarak düşünülmektedir. Çünkü her oyuncu bu problemle karşı karşıyadır, oyuncular stratejilerini eş-anlı olarak {Si } kümelerinden seçtikleri düşünülmektedir. 1.4 Rastlantısallaşmış Seçimler Bu bölüme kadar oyuncuların seçimlerini belirlilik (kesinlik) altında yaptıkları varsayılmıştır. Bununla beraber, birseçimle karşılaşan oyuncunun rastlantısallaştırma olanağını dışlamanın önsel (priori) bir nedeni yoktur. Tanım (1.3)’de belirtildiği gibi, deterministik bir strateji, pür strateji olarak da adlandırılabilir. i oyuncusu için her H ∈ H enformasyon kümesinde si (H) deterministik seçimini belirtmektedir. i oyuncusunun (sonlu) pür stratejiler kümesi Si olsun. Oyuncunun rastlantısallaştırmasının yolu bu kümeden rastlantısal olarak bir elemanı seçmesidir. Bu tip rastlantısallaştıma durumunda karma strateji söz konusudur. Tanım 1.4. i oyuncusunun veri (sonlu) pür strateji kümesi Si ile, karma stratejisi, σi : P Si → [0, 1] sayesinde, si ∈Si σi (si ) = 1 koşulunu sağlayan σi (si ) ≥ 0 olasılığını her pür si ∈ Si stratejisine atamaktadır. 9 i oyuncusunun M tane pür stratejisi olsun; Si = {s1i , ..., sM i }. i oyuncusunun olanaklı karma stratejiler kümesi bundan dolayı aşağıdaki simpleksin noktalarıyla ilgilidir; ( ∆(Si ) = (σ1i , ..., σM i ) : bütün m = 1, ..., M için σmi ≥ 0 ve M X ) σmi = 1 m=1 Bu simpleks Si kümesinin karma genişlemesi olarak adlandırılmaktadır. Pür strateji, Si kümesinin elemanları üzerindeki olasılık dağılımının yozlaştığı (degenerate) karma stratejilerin özel bir durumu olarak da görülebilir. 10