Ek.3. Trigonometrik ve Rasyonel integral örnekleri Ek.3.1. Trigonometrik fonksiyonların integral örnekleri 1) dx ? 2(1 cos x) sin x x 2dt 2t 1 t2 Çözüm : tg t dx sin x cos x 2 1 t2 1 t2 1 t2 2dt 2dt 2dt 2 2 1 t 1 t 1 t2 1 t 2 1 t 2 2t 4 2t 1 t2 2t 21 2 . 1 t2 1 t2 1 t 2 1 t 2 1 t2 2dt 4 2t Π 2dt ln 2 t c ln 2 tg dt 2(2 t ) 2 t x c 2 dx ? 0 1 sin x cos x x dt Çözüm : tg t x 2Arc tan t dx 2 2 2 1 t 2) 2 sinx Π 2 0 Π 2t 1 t 2 cos x dx 1 sin x cos x 1 t 2 2 1 t 2dt 1 t 1 2t 1 t 2 2dt 2 1 t 2 1 t 2 1 t 2 2 1 t 2t 1 t 1 t 2 2 2 dx 2 1 t dt x 0 1 sin x cos x 2 . 2t 2dt t 1 ln t 1 ln tg 2 1 c 1 t Π π 2 dx x 0 2 0 1 sin x cos x ln tg 2 1 ln tg 2 1 ln tg 2 1 2 ln tg Π 1 ln tg 0 1 ln 2 ln 1 ln 2 0 ln 2 4 3) Ι 8(cos x 1) ? dx 2dt Çözüm : dx 8(cos x 1) 1 t 2dt 2 1 t 2 1 t 2 1 t 2 1 t 2 8 1 8 2 2 1 t 1 t 2dt 1 1 1 x 8.2 8 dt 8 t c 8 tg 2 c 497 2 4) x .dx 3 2 ? (9 x ) Çözüm : x 3sinθ dx 3cosθ.dθ 2 2 2 (9 x ) 3cosθ ise 2 sin θ cos 2 x θ 9x 2 x .dx 2 (9 x ) 2 3 2 9sin θ.3cosθ.dθ 3 27.cos θ 2 2 dθ tan θ.dθ (sec θ 1)dθ sec θ.dθ dθ 2 Arctan 4 5) Tan x.d.x x c 3 integralin i hesaplayın ız. 2 Çözüm : u Tanx du sec x.dx olur. 4 2 2 2 2 Tan x.dx Tan x.Tan x.dx Tan x(sec x 1)dx 2 2 2 2 2 2 2 2 Tan x.sec x.dx Tan x.dx Tan x.sec x.dx (sec x 1)dx 2 2 Tan x.sec xdx sec x.dx dx u .du du dx 3 1 3 1 u u x c Tan x Tanx x c 3 3 Π 6) Ι 2 1 1 cos x dx ? Π 3 2 x 2 1 t Çözüm : 1 yol : t tan dersek dx dt cosx 2 2 2 1 t 1 t R R 1 2 x için t tan 1 1 3 6 2 3 dt 1 1 t dt 2 Ι 2 t 1 t 1 1 t R R x için t tan 1 31 2 3 2 4 1 t 2 x 2 x 2 yol : cosx 1 2sin 1 cosx 2sin olur. 2 2 π 2 dx x Ι cotan 2 x 2 π 2sin 3 2 π π 2 1 3 3 498 1 1 3 1 3 x dx ? . x2 9 Çözüm : x 3tg dx 3 sec 2 .d 7) 2 3 sec 2 .d . (3tg ) 2 . (3tg ) 2 9 3 sec 2 .d . 9tg 2 . 9tg 2 9 3 sec 2 .d . 9tg 2 . 9(tg 2 1) 3 sec 2 .d . 9tg 2 .3 sec sec .d . 1 1 cos 2 1 cos .d . . 2 .d 2 9 cos sin 9 sin 2 9tg sin u cos .d . du 1 du 1 2 1 1 1 1 1 x2 9 u du . c c c c c 9 u2 9 9 9u 9u 9. sin 9. sin 9x x x x x 3tg tg sin Arctg c 3 3 x2 9 8) dx ? 6 4 cos x 4 sin x x 2dt 2t 1 t2 t dx sin x cos x 2 1 t2 1 t2 1 t2 2dt 2dt 2 dx 2dt 1 t 1 t2 2 2 2 2 6 4 cos x 4 sin x 4(1 t ) 4(2t ) 6 6t 4 4t 8t 2t 8t 10 6 1 t2 1 t2 1 t2 2dt dt dt x Arctg tg 2 c 2 2 2 2 2(t 4t 5) (t 2) 1 (t 4t 4 1) Çözüm : tan 9) dx ? x . 1 x2 Çözüm : x sin dx cos .d . 2 cos .d . sin 2 . 1 sin 2 cos .d sin . cos 2 d sin 2 cos 1 x2 cot an c c c sin x x 1 x2 499 2x 5 10) dx ? 4 x 2 8x 9 1 8x 8 dx Çözüm : dx 3 4 4 x 2 8x 9 4 x 2 8x 9 4 x 2 8 x 9 u (8 x 8)dx du (8 x 8)dx 4x 8x 9 dx 2 2(x+1) 4x 2 8x 9 du 1 2 u u 1 2 du 2 u c 2 4 x 2 8 x 9 c dx x 2 2x 9 4 1 2 dx ( x 1) 2 5 4 4 x 2 8x 9 5 x 1 1 2 1 ln 2 2 5 5 tan θ dx sec θ.d.θ 2 2 2 2 5 5 . sec θ.d.θ sec θ.d.θ 1 1 1 2 2 sec θ.d.θ ln sec θ tan θ c 2 2 2 5 5 2 5 sec θ tan θ 2 4 4 2 4 x 8x 9 2( x 1) c 5 5 500 6 11) 3 (x dx 2 6 x 5) 3 ? 2 Çözüm : x 2 6 x 5 x 2 6 x 9 9 5 ( x 3) 2 4 6 dx 3 dx 3 du 3 2 6 x 5) 2 3 (( x 3) 4) 2 (u 2 4) 2 x 3 u dx du u a sec x 3 2 sec 3 (x 2 6 du a sec . tan .d dx 2 sec tan .d . 6 dx 3 6 2 sec tan .d . 3 2 sec . tan .d 4) 2 3 ( 4 sec 4) 2 ( 4(sec 2 1)) 2 sec . tan .d . 1 sec . tan .d . 1 sec .d . 3 3 2 4 4 tan tan 2 ( 4 tan ) 2 3 (( x 3) 2 2 3 2 1 1 cos 2 1 cos .d . 1 dt 1 . .d 2 t 2 dt 2 4 cos sin 2 4 4 4 sin t sin t cos .d dt x 3 x2 6x 5 sec sin 2 x 3 1 1 1 1 1 x 3 . C . C . c 4 t 4 sin 4 x 2 6x 5 x 3 2 sec 6 dx 3 (( x 3) 2 4) 3 2 1 . 4 dx ? 3 5cosx 2dt 1 t2 Çözüm : 1 t2 3 5 1 t2 2 xx2 - 6x6 x+55 x-3 3 4 5 x 2 6x 5 ( x 3) 12) 2dt 2dt dt 1 t2 2 2 2 2 3 3t 5 5t 8t 2 4t 1 2 1 t 1 A B 1 A(2t 1) B(2t 1) 2 2t 1 2t 1 4t 1 1 1 1 1 1 2B B ve t 1 2A A 2 2 2 2 x 2tg 1 1 dt 1 dt 1 2t 1 1 2 ln c ln c x 2 2t 1 2 2t 1 4 2t 1 4 2tg 1 2 du 2t 1 u 2dt du dt 2 t 501 13) y 5 eğrisi y = 0 , x = 1, x = 5 doğruları ile sınırlı bölgenin;a) A = ? b) Vx = ? c) Vy = ? x Çözüm : a) b 5 5 5 5 A ( y1 y 2 )dx 0 dx dx a 1 x 1x 5 5 1 5 1 dx 5(ln x 5Ln 5 x 1 b) b 2 5 5 2 5 Vx y dx dx 25 x 2 dx a 1 x 1 1 V x 25Π x b 5 5 25Π 1 4 20Π 5 5 5 V y 2 xydx 2 x dx 10 dx x a 1 1 c) V y 10( x 5 10(5 1) 40 1 14) x2 = y eğrisi , x = 0, y = 1, y = 4 doğruları ile sınırlı bölgenin y- ekseni etrafında dönmesiyle oluşan dönel yüzeyin dönel alanı nedir? Çözüm : b S 2 x 1 ( x' ) 2 dy idi. a x 4 y x' dx 1 1 ( x' ) 2 dy 4y 2 y 4 4y 1 1 S 2 y 1 dy 2 y dy 4y y 1 1 4y 1 u 4y 1 u2 1 dy ud .u 2 u 3 17 1 S 2 4 y 1dy 2 u u.du 3 2 5 1 5 4 17 17 5 5 3 y 1 u 1 5 y 2 u 2 17 502 17 15) y 3 x eğrisi y = 0, x = 1, x = 2 doğruları ile sınırlı bölgenin x- ekseni etrafında dönmesiyle oluşan dönel yüzeyin yanal alanı nedir ? b Çözüm : S 2 y 1 ( y' ) 2 dx a 3 y 3 x y' 2 S 2Π 3 x 1 1 2 x ( y' ) 2 2 9 dx 3Π x 4x 1 2 9 4x 4x 9 x dx 17 1 S 3 4 x 9dx 3 u u.du 2 1 13 3Π u 3 S ( 2 3 17 ise S 17 17 13 13 olur. 13 4x 9 u u2 9 1 dx u.du 2 4 x 2 u 17 4x 9 u 2 x x 1 u 13 16) e Lnx Ln( x2 1) e Çözüm : dx ? Lnx Ln( x2 1) Ln( x ) x2 1 dx x.dx dx e x2 1 x2 – 1 = u dersek ve x.dx 1. Yol : du olur. Böylece ; 2 x.dx 1 du 1 1 Ln u c Ln x 2 1 c 2 2 1 2 u 2 x 2. Yol : x x A B ise x 1 ( x 1)( x 1) x 1 x 1 2 x x ( A B ) ( A B) 1 0 ve x A( x 1) B( x 1) A+B =1 A-B = 0 ise A = B = 1 bulunur . Buna göre; 2 x.dx 1 dx 1 dx 1 1 1 2 2 2 x 1 2 x 1 2 Ln x 1 2 Ln x 1 c 2 Ln x 1 c aynı sonuç bulunur. x 1 503 17) y’’= 3x2 – 2x +1 olan ve (-2, 3) 'deki eğimi m y' ' dx y' (3x Çözüm : y ' x 3 x 2 x c1 y' dx y (3x 3 2 2 x 1)dx 3 olan eğrinin denklemini bulunuz. 4 3 4 3 3 59 (2) 3 (2) 2 (2) c1 c1 4 4 4 x2 x 59 1 1 1 59 )dx y x 4 x 3 x 2 x c2 y 4 4 3 2 4 1 1 1 59 143 (2) 4 (2) 3 (2) 2 (2) c 2 3 c 2 4 3 2 4 6 Böylece; y x 4 x 3 x 2 59 143 olur. x 4 3 2 4 6 ln lnx dx ? xlnx Çözüm: ln ln x t 1 x dx dt dx dt dx xlnxdt lnx xlnx 18) 1 t2 1 2 xlnxdt tdt c ln lnx c xlnx 2 2 2 5 19) sin xcos xdx ? Çözüm: sin 2 x(cos 2 x) 2 cosxdx sin 2 x(1 sin 2 x) 2 .cosxdx sinx u cosxdx du u 2 1 u 2 du u 2 (1 2u 2 u 4 )du 2 u3 2 5 u7 sin 3 x 2sin 5 x sin7x u 2u u du u c c 3 5 7 3 5 7 e x dx 20) 2 x ? e ex 2 2 4 6 504 x x Çözüm : e u e dx du olur. x e e dx 2x x e 2 du 2 u u2 1 2 u u2 1 A B (u 2)( u 1) u 2 u 1 1 A(u 1) B(u 2) 1 (A B)u (A 2B) A B 0 ve A 2B 1 1 1 Buradan ; A B 3 3 x e e dx 2x x du 1 du u 2 3 u 1 e 2 x 1 1 1 e 2 ln u 2 ln u 1 c ln x c 3 3 3 e 1 5e x dx ? 4 e2x Çözüm : e x u u 2 tan 21) u u Arc tan 2 2 2 2 5du du 2 sec .d 2 sec .d 2 sec 2 .d 5 5 5 5 4 u 2 4 4 tan 2 4(1 tan 2 ) 4 sec 2 4 u2 e x dx du du 2 sec 2 .d tan 1 5 5 u 5 ex 5 d Arc tan Arc tan c 2 2 2 2 2 2 cos xdx ? sin x e 22) Çözüm : e sin x t cos xesin x dx dt dx dt cos xesin x dt dt dt 2 2 (t 1/ 2 .t 1 )dt (t 3 / 2 )dt c c sin x t cos xesin x t .t t t .e sin x e cos x sin(ln x) dx ? x 1 Çözüm : ln x t dx dt dx xdt x sin(ln x) sin t dx .xdt cos t c cos ln x c x x 23) 505 24) dx x 1 x ? Çözüm : 1 x t 1 x t 2 x 1 t 2 dx x 1 x 2t.dt dt dt A B 2 2 (1 t 2 ).t 1 t2 t 2 1 (t 1) (t 1) 1 A(t 1) B (t 1) t 1 1 2 A A t 1 1 2 B B 1 2 1 2 1 dt 1 dt t 1 1 x 1 2 2 ln t 1 ln t 1 ln ln c 2 t 1 2 t 1 t 1 x 1 x 1 x 1 dx 25) Arctgxdx ? Çözüm : Arctgx u dx du dx du xv 2 1 x Arctgxdx x.Arctgx - xdx 1 x 2 1 x2 u 2 xdx du Arctgxdx xdx 1 x2 1 du 2 u 1 Ln u c 2 1 Ln 1 x 2 c 2 x. Arctgx 1 Ln 1 x 2 c 2 506 Ek.3.2. Rasyonel Kesirleri İçeren İntegral Örnekleri x3 dx ? x x2 x3 A B C Çözüm : 2 2 x 1 x ( x 1) x x 26) 3 x 3 Ax( x 1) B ( x 1) Cx 2 x 3 Ax 2 Ax Bx B Cx 2 A C 0 A B 1 B 3 Buradan A=4 ve C=-4 bulunur.Buna göre; x x 3 3 x 27) 2 dx 4 ln x 3 4 ln x 1 c x 3x 2 4 x 5dx ? ( x 2 4)( x 2 9) 2 3x 4x 5 A B C D Çözüm : ( x 2)( x 2)( x 3)( x 3) x 2 x 2 x 3 x 3 2 2 2 2 2 3x 4x 5 A( x 2)( x 9) B( x 2)( x 9) C( x 4)( x 3) D( x 3)( x 4) 20 2 x 2 9 20A A x 3 20 30C C 19 3 5 15 x 2 25 20B B x 3 44 30D D 4 22 20 dx 5 dx 2 dx 15 dx 9 x 2 4 x 2 3 x 3 22 x 3 20 5 2 15 ln x 2 ln x 2 ln x 3 ln x 3 c 9 4 3 22 28) x3 1 ( x 1) 4 Çözüm : dx ? x3 1 ( x 1) 4 A B C D 2 3 x 1 ( x 1) ( x 1) ( x 1) 4 x 3 1 A( x 1) 3 B ( x 1) 2 C ( x 1) D x 3 1 Ax 3 3 Ax 2 3 Ax A Bx 2 2 Bx B Cx C D x 3 1 x 3 A x 2 (3 A B ) x(3 A 2 B C ) A B C D ve buradan; A 1, B 3, C 3, D 2 olur. x3 1 dx dx dx dx 3 3 2 4 2 3 x 1 ( x 1) ( x 1) ( x 1) ( x 1) 2 x3 1 3 3 1 ( x 1) 4 dx ln x 1 x 1 2 . ( x 1) 2 2 1 . c 3 ( x 1) 3 507 3x 1 dx ? 4x 2 2x 3x 1 3x 1 A B Çözüm : 2 4 x 2 x 2 x(2 x 1) 2 x 2 x 1 1 1 3 x 1 A(2 x 1) B(2 x) ve buradan; x B x 0 A 1 2 2 dx 1 dx 1 1 ln x ln 2 x 1 c 2x 2 2x 1 2 4 29) 30) dx ? sin x. cos x 2dt Çözüm : dx sin x. cos x (1 t 2 ) 2 2 (1 t 2 ) 2 1 t 2 . 1 t 2 2t (1 t 2 ) 2t 1 t 2 . 1 t 2 1 t 2 A B C 1 t 2 A(t 1)(t 1) B.t (t 1) C.t (t 1) t t 1 t 1 t (t 1) t 1 2 B 2 B 1 t 1 2C 2 C 1 t 0 A 1 A 1 dt dt dt t ln t ln t 1 ln t 1 c ln 2 c ln t t 1 t 1 t 1 x4 1 31) 3 ? x x x 2 1 Çözüm : x 3 dx xdx x x x2 1 3 x x x2 1 x3 x x 2 c 2 x tan 1 2 tg dx A B C x x 1 x 1 x 2 1 A( x 1)( x 1) Bx ( x 1) Cx( x 1) x4 1 dx dx dx 3 xdx x x 1 x 1 x x ( x 1)( x 1) x2 x2 ln x ln( x 1) ln( x 1) c ln c 2 2 x 508 x3 1 32) Ι 5 4 dx ? x x 5x 3 x 2 8x 4 Çözüm : x 5 x 4 5x 3 x 2 8x 4 (x 1)3 (x 2)2 x3 1 5 4 3 2 x x 5x x 8x 4 A B C D E 2 3 x 1 (x 1) (x 1) x 2 (x 2)2 x 3 1 A(x 1)2 (x 2)2 B(x 1)(x 2)2 C(x 2)2 D(x 2)(x 1)3 E(x 1)3 x 3 1 A(x 2 2x 1)(x 2 4x 4) B(x 1)(x 2 4x 4) C(x 2 4x 4) D(x 2)(x 3 3x 2 3x 1) E(x 3 3x 2 3x 1) x 3 1 x 4 (A D) x 3 (2A B D E) x 2 (3E 3B C 3D 3E) x( 4A 4B 5D 3E) (12A 4B 4C 2D E) 2 6 x 1 2 9C C 9 27 7 x 2 için 7 27E E 27 3A 3B C 3D 3E 0 2 21 15 3A 3B 3D 0 3A 3B 3D (i) 9 27 27 20 2A B D E 1 2A B D (ii) 27 20 2A B D A D 0 A D 27 15 15 15 5 3D 3B 3D 3B B 27 27 81 27 15 5 20 20 20 15 45 5 D 2A B A 3A B 3A A 81 27 27 27 27 81 243 27 I 5 27 dx 5 dx 6 dx 5 dx 2 dx x 1 27 x 12 - 27 x 13 27 x 2 27 x 22 5 5 1 3 1 5 2 1 . ln x 1 . . . ln x 2 . c 27 27 x 1 27 x 12 27 27 x 2 509